20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The newest cathinone derivatives as designer drugs: an analytical and toxicological review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Currently, among new psychoactive substances, cathinone derivatives constitute the biggest group, which are mainly classified into N-alkylated, 3,4-methylenedioxy- N-alkylated, N-pyrrolidinyl, and 3,4-methylenedioxy- N-pyrrolidinyl derivatives. These derivatives are actively being subjected to minor modifications at the alkyl chains or the aromatic ring to create new synthetic cathinones with the goal of circumventing laws. In this review, the new synthetic cathinones that have appeared on the illegal drug market during the period 2014–2017 are highlighted, and their characterization by gas chromatography–mass spectrometry and liquid chromatography–tandem mass spectrometry is presented.

          Methods

          Various key words were used to conduct an extensive literature search across a number of databases, specifically for synthetic cathinones that emerged between 2014 and 2017.

          Results

          More than 30 new cathinone derivatives were discovered. The preexisting parental compounds for the new derivatives are also referenced, and their mass spectral data are compiled in a table to facilitate their identification by forensic toxicologists.

          Conclusions

          To our knowledge, this is the most current review presenting new synthetic cathinones. Political authorities should take measures to implement and enforce generic scheduling (comprehensive system) laws to control the diversely modified synthetic cathinones. Supplementing the existing databases with new findings can greatly facilitate the efforts of forensic toxicologists.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Pharmacological characterization of designer cathinones in vitro.

          Designer β-keto amphetamines (e.g. cathinones, 'bath salts' and 'research chemicals') have become popular recreational drugs, but their pharmacology is poorly characterized. We determined the potencies of cathinones to inhibit DA, NA and 5-HT transport into transporter-transfected HEK 293 cells, DA and 5-HT efflux from monoamine-preloaded cells, and monoamine receptor binding affinity. Mephedrone, methylone, ethylone, butylone and naphyrone acted as non-selective monoamine uptake inhibitors, similar to cocaine. Mephedrone, methylone, ethylone and butylone also induced the release of 5-HT, similar to 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) and other entactogens. Cathinone, methcathinone and flephedrone, similar to amphetamine and methamphetamine, acted as preferential DA and NA uptake inhibitors and induced the release of DA. Pyrovalerone and 3,4-methylenedioxypyrovalerone (MDPV) were highly potent and selective DA and NA transporter inhibitors but unlike amphetamines did not evoke the release of monoamines. The non-β-keto amphetamines are trace amine-associated receptor 1 ligands, whereas the cathinones are not. All the cathinones showed high blood-brain barrier permeability in an in vitro model; mephedrone and MDPV exhibited particularly high permeability. Cathinones have considerable pharmacological differences that form the basis of their suggested classification into three groups. The predominant action of all cathinones on the DA transporter is probably associated with a considerable risk of addiction. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue.

            The nonmedical use of 'designer' cathinone analogs, such as 4-methylmethcathinone (mephedrone) and 3,4-methylenedioxymethcathinone (methylone), is increasing worldwide, yet little information is available regarding the mechanism of action for these drugs. Here, we employed in vitro and in vivo methods to compare neurobiological effects of mephedrone and methylone with those produced by the structurally related compounds, 3,4-methylenedioxymethamphetamine (MDMA) and methamphetamine. In vitro release assays using rat brain synaptosomes revealed that mephedrone and methylone are nonselective substrates for plasma membrane monoamine transporters, similar to MDMA in potency and selectivity. In vivo microdialysis in rat nucleus accumbens showed that i.v. administration of 0.3 and 1.0 mg/kg of mephedrone or methylone produces dose-related increases in extracellular dopamine and serotonin (5-HT), with the magnitude of effect on 5-HT being greater. Both methcathinone analogs were weak motor stimulants when compared with methamphetamine. Repeated administrations of mephedrone or methylone (3.0 and 10.0 mg/kg, s.c., 3 doses) caused hyperthermia but no long-term change in cortical or striatal amines, whereas similar treatment with MDMA (2.5 and 7.5 mg/kg, s.c., 3 doses) evoked robust hyperthermia and persistent depletion of cortical and striatal 5-HT. Our data demonstrate that designer methcathinone analogs are substrates for monoamine transporters, with a profile of transmitter-releasing activity comparable to MDMA. Dopaminergic effects of mephedrone and methylone may contribute to their addictive potential, but this hypothesis awaits confirmation. Given the widespread use of mephedrone and methylone, determining the consequences of repeated drug exposure warrants further study.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive 'bath salts' products.

              The abuse of psychoactive 'bath salts' containing cathinones such as 3,4-methylenedioxypyrovalerone (MDPV) is a growing public health concern, yet little is known about their pharmacology. Here, we evaluated the effects of MDPV and related drugs using molecular, cellular, and whole-animal methods. In vitro transporter assays were performed in rat brain synaptosomes and in cells expressing human transporters, while clearance of endogenous dopamine was measured by fast-scan cyclic voltammetry in mouse striatal slices. Assessments of in vivo neurochemistry, locomotor activity, and cardiovascular parameters were carried out in rats. We found that MDPV blocks uptake of [(3)H]dopamine (IC(50)=4.1 nM) and [(3)H]norepinephrine (IC(50)=26 nM) with high potency but has weak effects on uptake of [(3)H]serotonin (IC(50)=3349 nM). In contrast to other psychoactive cathinones (eg, mephedrone), MDPV is not a transporter substrate. The clearance of endogenous dopamine is inhibited by MDPV and cocaine in a similar manner, but MDPV displays greater potency and efficacy. Consistent with in vitro findings, MDPV (0.1-0.3 mg/kg, intravenous) increases extracellular concentrations of dopamine in the nucleus accumbens. Additionally, MDPV (0.1-3.0 mg/kg, subcutaneous) is at least 10 times more potent than cocaine at producing locomotor activation, tachycardia, and hypertension in rats. Our data show that MDPV is a monoamine transporter blocker with increased potency and selectivity for catecholamines when compared with cocaine. The robust stimulation of dopamine transmission by MDPV predicts serious potential for abuse and may provide a mechanism to explain the adverse effects observed in humans taking high doses of 'bath salts' preparations.
                Bookmark

                Author and article information

                Contributors
                +48 32 254 03 79 , m.majchrzak00@gmail.com
                Journal
                Forensic Toxicol
                Forensic Toxicol
                Forensic Toxicology
                Springer Japan (Tokyo )
                1860-8965
                1860-8973
                7 September 2017
                7 September 2017
                2018
                : 36
                : 1
                : 33-50
                Affiliations
                [1 ]ISNI 0000 0001 2259 4135, GRID grid.11866.38, Department of General Chemistry and Chromatography, Institute of Chemistry, , University of Silesia, ; 9 Szkolna Street, 40-006 Katowice, Poland
                [2 ]ISNI 0000 0001 2259 4135, GRID grid.11866.38, Department of Organic Synthesis, Institute of Chemistry, , University of Silesia, ; 9 Szkolna Street, 40-006 Katowice, Poland
                [3 ]Toxicology Laboratory ToxLab, 6 Kossutha Street, 40-844 Katowice, Poland
                Article
                385
                10.1007/s11419-017-0385-6
                5754390
                29367861
                20a86762-8685-41e8-a103-2317cb42ec97
                © The Author(s) 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 30 July 2017
                : 22 August 2017
                Categories
                Review Article
                Custom metadata
                © Japanese Association of Forensic Toxicology and Springer Japan KK, part of Springer Nature 2018

                new synthetic cathinones,designer drugs,nps,lc–ms,gc–ms,nmr
                new synthetic cathinones, designer drugs, nps, lc–ms, gc–ms, nmr

                Comments

                Comment on this article