10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Repolarizing potassium currents in working myocardium of Japanese quail: a novel translational model for cardiac electrophysiology

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references141

          • Record: found
          • Abstract: not found
          • Article: not found

          Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart.

            The various cardiac regions have specific action potential properties appropriate to their electrical specialization, resulting from a specific pattern of ion-channel functional expression. The present study addressed regionally defined differential ion-channel expression in the non-diseased human heart with a genomic approach. High-throughput real-time RT-PCR was used to quantify the expression patterns of 79 ion-channel subunit transcripts and related genes in atria, ventricular epicardium and endocardium, and Purkinje fibres isolated from 15 non-diseased human donor hearts. Two-way non-directed hierarchical clustering separated atria, Purkinje fibre and ventricular compartments, but did not show specific patterns for epicardium versus endocardium, nor left- versus right-sided chambers. Genes that characterized the atria (versus ventricles) included Cx40, Kv1.5 and Kir3.1 as expected, but also Cav1.3, Cav3.1, Cav alpha2 delta2, Nav beta1, TWIK1, TASK1 and HCN4. Only Kir2.1, RyR2, phospholamban and Kv1.4 showed higher expression in the ventricles. The Purkinje fibre expression-portrait (versus ventricle) included stronger expression of Cx40, Kv4.3, Kir3.1, TWIK1, HCN4, ClC6 and CALM1, along with weaker expression of mRNA encoding Cx43, Kir2.1, KChIP2, the pumps/exchangers Na(+),K(+)-ATPase, NCX1, SERCA2, and the Ca(2+)-handling proteins RYR2 and CASQ2. Transcripts that were more strongly expressed in epicardium (versus endocardium) included Cav1.2, KChIP2, SERCA2, CALM3 and calcineurin-alpha. Nav1.5 and Nav beta1 were more strongly expressed in the endocardium. For selected genes, RT-PCR data were confirmed at the protein level. This is the first report of the global portrait of regional ion-channel subunit-gene expression in the non-diseased human heart. Our data point to significant regionally determined ion-channel expression differences, with potentially important implications for understanding regional electrophysiology, arrhythmia mechanisms, and responses to ion-channel blocking drugs. Concordance with previous functional studies suggests that regional regulation of cardiac ion-current expression may be primarily transcriptional.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents

              An envelope of tails test was used to show that the delayed rectifier K+ current (IK) of guinea pig ventricular myocytes results from the activation of two outward K+ currents. One current was specifically blocked by the benzenesulfonamide antiarrhythmic agent, E-4031 (IC50 = 397 nM). The drug-sensitive current, "IKr" exhibits prominent rectification and activates very rapidly relative to the slowly activating drug-insensitive current, "IKs." IKs was characterized by a delayed onset of activation that occurs over a voltage range typical of the classically described cardiac IK. Fully activated IKs, measured as tail current after 7.5-s test pulses, was 11.4 times larger than the fully activated IKr. IKr was also blocked by d-sotalol (100 microM), a less potent benzenesulfonamide Class III antiarrhythmic agent. The activation curve of IKr had a steep slope (+7.5 mV) and a negative half- point (-21.5 mV) relative to the activation curve of IKs (slope = +12.7 mV, half-point = +15.7 mV). The reversal potential (Erev) of IKr (-93 mV) was similar to EK (-94 mV for [K+]o = 4 mM), whereas Erev of IKs was -77 mV. The time constants for activation and deactivation of IKr made up a bell-shaped function of membrane potential, peaking between - 30 and -40 mV (170 ms). The slope conductance of the linear portion of the fully activated IKr-V relation was 22.5 S/F. Inward rectification of this relation occurred at potentials greater than -50 mV, resulting in a voltage-dependent decrease in peak IKr at test potentials greater than 0 mV. Peak IKr at 0 mV averaged 0.8 pA/pF (n = 21). Although the magnitude of IKr was small relative to fully activated IKs, the two currents were of similar magnitude when measured during a relatively short pulse protocol (225 ms) at membrane potentials (-20 to +20 mV) typical of the plateau phase of cardiac action potentials.
                Bookmark

                Author and article information

                Journal
                Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
                Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
                Elsevier BV
                10956433
                May 2021
                May 2021
                : 255
                : 110919
                Article
                10.1016/j.cbpa.2021.110919
                20acbe29-702e-4ba2-9f03-8d41179aa920
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article