Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A two-generation analysis of pollen pool genetic structure in flowering dogwood, Cornus florida (Cornaceae), in the Missouri Ozarks.

      American journal of botany

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Anthropogenic landscape change can disrupt gene flow. As part of the Missouri Ozark Forest Ecosystem Project, this study examined whether silvicultural practices influence pollen-mediated gene movement in the insect-pollinated species, Cornus florida L., by comparing pollen pool structure (Φ(st)) among clear-cutting, selective cutting, and uncut regimes with the expectation that pollen movement should be least in the uncut regime. Using a sample of 1500 seedlings-10 each from 150 seed parents (43 in clear-cut, 74 in selective, and 33 in control sites) from six sites (each ranging from 266 to 527 ha), eight allozyme loci were analyzed with a pollen pool structure approach known as TwoGener (Smouse et al., 2001; Evolution 55: 260-271). This analysis revealed that pollen pool structure was less in clear-cut (Φ(C) = 0.090, P < 0.001) than in uncut areas (Φ(U) = 0.174, P < 0.001), with selective-cut intermediate (Φ(S) = 0.125, P < 0.001). These estimates translate into more effective pollen donors (N(ep)) in clear-cut (N(ep) = 5.56) and selective-cut (N(ep) = 4.00) areas than in uncut areas (N(ep) = 2.87). We demonstrate that Φ(C) ≤ Φ(S) ≤ Φ(U), with Φ(C) significantly smaller than Φ(U) (P < 0.034). The findings imply that, as long as a sufficiently large number of seed parents remain to provide adequate reproduction and to avoid a genetic bottleneck in the effective number of mothers, silvicultural management may not negatively affect the effective number of pollen parents, and hence subsequent genetic diversity in Cornus florida.

          Related collections

          Author and article information

          Journal
          21652403
          10.3732/ajb.92.2.262

          Comments

          Comment on this article