16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Elucidating the structure of the magnesium aluminum chloride complex electrolyte for magnesium-ion batteries

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Non-aqueous Mg-ion batteries offer a promising way to overcome safety, costs, and energy density limitations of state-of-the-art Li-ion battery technology.

          Abstract

          Non-aqueous Mg-ion batteries offer a promising way to overcome safety, costs, and energy density limitations of state-of-the-art Li-ion battery technology. We present a rigorous analysis of the magnesium aluminum chloride complex (MACC) in tetrahydrofuran (THF), one of the few electrolytes that can reversibly plate and strip Mg. We use ab initio calculations and classical molecular dynamics simulations to interrogate the MACC electrolyte composition with the goal of addressing two urgent questions that have puzzled battery researchers: (i) the functional species of the electrolyte, and (ii) the complex equilibria regulating the MACC speciation after prolonged electrochemical cycling, a process termed as conditioning, and after prolonged inactivity, a process called aging. A general computational strategy to untangle the complex structure of electrolytes, ionic liquids and other liquid media is presented. The analysis of formation energies and grand-potential phase diagrams of Mg–Al–Cl–THF suggests that the MACC electrolyte bears a simple chemical structure with few simple constituents, namely the electro-active species MgCl + and AlCl 4 in equilibrium with MgCl 2 and AlCl 3. Knowledge of the stable species of the MACC electrolyte allows us to determine the most important equilibria occurring during electrochemical cycling. We observe that Al deposition is always preferred to Mg deposition, explaining why freshly synthesized MACC cannot operate and needs to undergo preparatory conditioning. Similarly, we suggest that aluminum displacement and depletion from the solution upon electrolyte resting (along with continuous MgCl 2 regeneration) represents one of the causes of electrolyte aging. Finally, we compute the NMR shifts from shielding tensors of selected molecules and ions providing fingerprints to guide future experimental investigations.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: not found
          • Article: not found

          Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prototype systems for rechargeable magnesium batteries.

              The thermodynamic properties of magnesium make it a natural choice for use as an anode material in rechargeable batteries, because it may provide a considerably higher energy density than the commonly used lead-acid and nickel-cadmium systems. Moreover, in contrast to lead and cadmium, magnesium is inexpensive, environmentally friendly and safe to handle. But the development of Mg batteries has been hindered by two problems. First, owing to the chemical activity of Mg, only solutions that neither donate nor accept protons are suitable as electrolytes; but most of these solutions allow the growth of passivating surface films, which inhibit any electrochemical reaction. Second, the choice of cathode materials has been limited by the difficulty of intercalating Mg ions in many hosts. Following previous studies of the electrochemistry of Mg electrodes in various non-aqueous solutions, and of a variety of intercalation electrodes, we have now developed rechargeable Mg battery systems that show promise for applications. The systems comprise electrolyte solutions based on Mg organohaloaluminate salts, and Mg(x)Mo3S4 cathodes, into which Mg ions can be intercalated reversibly, and with relatively fast kinetics. We expect that further improvements in the energy density will make these batteries a viable alternative to existing systems.
                Bookmark

                Author and article information

                Journal
                EESNBY
                Energy & Environmental Science
                Energy Environ. Sci.
                Royal Society of Chemistry (RSC)
                1754-5692
                1754-5706
                2015
                2015
                : 8
                : 12
                : 3718-3730
                Affiliations
                [1 ]Department of Materials Science and Engineering
                [2 ]Massachusetts Institute of Technology
                [3 ]Cambridge
                [4 ]USA
                [5 ]Materials Science Division
                [6 ]Argonne National Laboratory
                [7 ]Argonne
                [8 ]Environmental Energy Technologies Division
                [9 ]Lawrence Berkeley National Laboratory
                [10 ]Berkeley
                Article
                10.1039/C5EE02340H
                2129f0e3-be9d-4686-bcae-481e05d8ba6c
                © 2015
                History

                Comments

                Comment on this article