11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Atorvastatin but Not Pravastatin Impairs Mitochondrial Function in Human Pancreatic Islets and Rat β-Cells. Direct Effect of Oxidative Stress

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Statins are a class of drugs widely prescribed as frontline therapy for lowering plasma LDL-cholesterol in cardiovascular risk prevention. Several clinical reports have recently suggested an increased risk of type 2 diabetes associated with chronic use of these drugs. The pathophysiology of this effect remains to be fully elucidated but impaired β-cell function constitutes a potential mechanism. The aim of this study was to explore the effect of a chronic treatment with lipophilic and hydrophilic statins on β-cell function, using human pancreatic islets and rat insulin-secreting INS-1 cells; we particularly focused on the role of mitochondria and oxidative stress. The present study demonstrates, for the first time, that atorvastatin (lipophilic) but not pravastatin (hydrophilic) affected insulin release and mitochondrial metabolism due to the suppression of antioxidant defense system and induction of ROS production in pancreatic β-cell models. Mevalonate addition and treatment with a specific antioxidant (N-AcetylCysteine) effectively reversed the observed defects. These data demonstrate that mitochondrial oxidative stress is a key element in the pathogenesis of statin-related diabetes and may have clinical relevance to design strategies for prevention or reduction of statin induced β-cell dysfunction and diabetes in patients treated with lipophilic statins.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells.

          Antioxidant enzyme expression was determined in rat pancreatic islets and RINm5F insulin-producing cells on the level of mRNA, protein, and enzyme activity in comparison with 11 other rat tissues. Although superoxide dismutase expression was in the range of 30% of the liver values, the expression of the hydrogen peroxide-inactivating enzymes catalase and glutathione peroxidase was extremely low, in the range of 5% of the liver. Pancreatic islets but not RINm5F cells expressed an additional phospholipid hydroperoxide glutathione peroxidase that exerted protective effects against lipid peroxidation of the plasma membrane. Regression analysis for mRNA and protein expression and enzyme activities from 12 rat tissues revealed that the mRNA levels determine the enzyme activities of the tissues. The induction of cellular stress by high glucose, high oxygen, and heat shock treatment did not affect antioxidant enzyme expression in rat pancreatic islets or in RINm5F cells. Thus insulin-producing cells cannot adapt the low antioxidant enzyme activity levels to typical situations of cellular stress by an upregulation of gene expression. Through stable transfection, however, we were able to increase catalase and glutathione peroxidase gene expression in RINm5F cells, resulting in enzyme activities more than 100-fold higher than in nontransfected controls. Catalase-transfected RINm5F cells showed a 10-fold greater resistance toward hydrogen peroxide toxicity, whereas glutathione peroxidase overexpression was much less effective. Thus inactivation of hydrogen peroxide through catalase seems to be a step of critical importance for the removal of reactive oxygen species in insulin-producing cells. Overexpression of catalase may therefore be an effective means of preventing the toxic action of reactive oxygen species.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dysregulation of the mevalonate pathway promotes transformation.

            The importance of cancer metabolism has been appreciated for many years, but the intricacies of how metabolic pathways interconnect with oncogenic signaling are not fully understood. With a clear understanding of how metabolism contributes to tumorigenesis, we will be better able to integrate the targeting of these fundamental biochemical pathways into patient care. The mevalonate (MVA) pathway, paced by its rate-limiting enzyme, hydroxymethylglutaryl coenzyme A reductase (HMGCR), is required for the generation of several fundamental end-products including cholesterol and isoprenoids. Despite years of extensive research from the perspective of cardiovascular disease, the contribution of a dysregulated MVA pathway to human cancer remains largely unexplored. We address this issue directly by showing that dysregulation of the MVA pathway, achieved by ectopic expression of either full-length HMGCR or its novel splice variant, promotes transformation. Ectopic HMGCR accentuates growth of transformed and nontransformed cells under anchorage-independent conditions or as xenografts in immunocompromised mice and, importantly, cooperates with RAS to drive the transformation of primary mouse embryonic fibroblasts cells. We further explore whether the MVA pathway may play a role in the etiology of human cancers and show that high mRNA levels of HMGCR and additional MVA pathway genes correlate with poor prognosis in a meta-analysis of six microarray datasets of primary breast cancer. Taken together, our results suggest that HMGCR is a candidate metabolic oncogene and provide a molecular rationale for further exploring the statin family of HMGCR inhibitors as anticancer agents.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Safety of statins: focus on clinical pharmacokinetics and drug interactions.

              Statin monotherapy is generally well tolerated, with a low frequency of adverse events. The most important adverse effects associated with statins are myopathy and an asymptomatic increase in hepatic transaminases, both of which occur infrequently. Because statins are prescribed on a long-term basis, however, possible interactions with other drugs deserve particular attention, as many patients will typically receive pharmacological therapy for concomitant conditions during the course of statin treatment. This review summarizes the pharmacokinetic properties of statins and emphasizes their clinically relevant drug interactions.
                Bookmark

                Author and article information

                Contributors
                fpurrell@unict.it
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                19 September 2017
                19 September 2017
                2017
                : 7
                : 11863
                Affiliations
                [1 ]ISNI 0000 0004 1757 1969, GRID grid.8158.4, Department of Clinical and Experimental Medicine, , Garibaldi Hospital, University of Catania, ; Catania, Italy
                [2 ]ISNI 0000 0004 1757 3729, GRID grid.5395.a, Department of Clinical and Experimental Medicine, , Islet Cell Laboratory, University of Pisa, ; Pisa, Italy
                [3 ]ISNI 0000 0004 1762 5517, GRID grid.10776.37, Department of Biomedicine, , Internal Medicine and Medical Specialties (DIBIMIS), University of Palermo, ; Palermo, Italy
                Author information
                http://orcid.org/0000-0002-1744-1561
                Article
                11070
                10.1038/s41598-017-11070-x
                5605712
                28928397
                21aaba80-477a-48ad-b10e-12247378f40e
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 20 February 2017
                : 14 August 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article