2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Potential enhancement and targeting strategies of polymeric and lipid-based nanocarriers in dermal drug delivery

      1 , 1 , 1
      Therapeutic Delivery
      Future Science Ltd

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nanocarriers used for alternative drug-delivery strategies have gained interest due to improved penetration and delivery of drugs into specific regions of the skin in recent years. Dermal drug delivery via polymeric-based nanocarriers (polymeric nanoparticles, micelles, dendrimers) and lipid-based nanocarriers (solid–lipid nanoparticles and nanostructured lipid carriers, vesicular nanocarriers including liposomes, niosomes, transfersomes and ethosomes) has been widely investigated. Although penetration of nanocarriers through the intact skin could be restricted, these carriers are particularly considered as feasible for the treatment of dermatological diseases in which the skin barrier is disrupted and also for follicular delivery of drugs for management of skin disorders such as acne. This review mainly highlights the recent approaches on potential penetration enhancement and targeting mechanisms of these nanocarriers.

          Related collections

          Most cited references129

          • Record: found
          • Abstract: found
          • Article: not found

          Structure and design of polymeric surfactant-based drug delivery systems.

          The review concentrates on the use of polymeric micelles as pharmaceutical carriers. Micellization of biologically active substances is a general phenomenon that increases the bioavailability of lipophilic drugs and nutrients. Currently used low-molecular-weight pharmaceutical surfactants have low toxicity and high solubilization power towards poorly soluble pharmaceuticals. However, micelles made of such surfactants usually have relatively high critical micelle concentration (CMC) and are unstable upon strong dilution (for example, with the blood volume upon intravenous administration). On the other hand, amphiphilic block co-polymers are also known to form spherical micelles in solution. These micelles have very high solubilization capacity and rather low CMC value that makes them very stable in vivo. Amphiphilic block co-polymers suitable for micelle preparation are described and various types of polymeric micelles are considered as well as mechanisms of their formation, factors influencing their stability and disintegration, their loading capacity towards various poorly soluble pharmaceuticals, and their therapeutic potential. The basic mechanisms underlying micelle longevity and steric protection in vivo are considered with a special emphasis on long circulating drug delivery systems. Advantages and disadvantages of micelles when compared with other drug delivery systems are considered. New polymer-lipid amphiphilic compounds such as diacyillipid-polyethylene glycol, are described and discussed. These compounds are very attractive from a practical point of view, since they easily micellize yielding extremely stable micelles with very high loading capacity. Micelle passive accumulation in the areas with leaky vasculature (tumors, infarct zones) is discussed as an important physiology-based mechanism of drug delivery into certain target zones. Targeted polymeric micelles prepared by using thermo- or pH-sensitive components or by attaching specific targeted moieties (such as antibodies) to their outer surface are described as well as their preparation and some in vivo properties. The fast growing field of diagnostic micelles is analyzed. Polymeric micelles are considered loaded with various agents for gamma, magnetic resonance, and computed tomography imaging. Their in vitro and in vivo properties are discussed and the results of the initial animal experiments are presented.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Solid lipid nanoparticles: production, characterization and applications.

            W Mehnert (2001)
            Solid lipid nanoparticles (SLN) have attracted increasing attention during recent years. This paper presents an overview about the selection of the ingredients, different ways of SLN production and SLN applications. Aspects of SLN stability and possibilities of SLN stabilization by lyophilization and spray drying are discussed. Special attention is paid to the relation between drug incorporation and the complexity of SLN dispersions, which includes the presence of alternative colloidal structures (liposomes, micelles, drug nanosuspensions, mixed micelles, liquid crystals) and the physical state of the lipid (supercooled melts, different lipid modifications). Appropriate analytical methods are needed for the characterization of SLN. The use of several analytical techniques is a necessity. Alternative structures and dynamic phenomena on the molecular level have to be considered. Aspects of SLN administration and the in vivo fate of the carrier are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ethosomes - novel vesicular carriers for enhanced delivery: characterization and skin penetration properties.

              This work describes a novel carrier for enhanced skin delivery, the ethosomal system, which is composed of phospholipid, ethanol and water. Ethosomal systems were much more efficient at delivering a fluorescent probe to the skin in terms of quantity and depth, than either liposomes or hydroalcoholic solution. The ethosomal system dramatically enhanced the skin permeation of minoxidil in vitro compared with either ethanolic or hydroethanolic solution or phospholipid ethanolic micellar solution of minoxidil. In addition, the transdermal delivery of testosterone from an ethosomal patch was greater both in vitro and in vivo than from commercially available patches. Skin permeation of ethosomal components, ethanol and phospholipid, was demonstrated in diffusion-cell experiments. Ethosomal systems composed of soy phosphatidylcholine 2%, ethanol 30% and water were shown by electron microscopy to contain multilamellar vesicles. 31P-NMR studies confirmed the bilayer configuration of the lipids. Calorimetry and fluorescence measurements suggested that the vesicular bilayers are flexible, having a relatively low T(m) and fluorescence anisotropy compared with liposomes obtained in the absence of ethanol. Dynamic light scattering measurements indicated that ethanol imparted a negative charge to the vesicles. The average vesicle size, as measured by dynamic light scattering, was modulated by altering the ethosome composition. Experiments using fluorescent probes and ultracentrifugation showed that the ethosomes had a high entrapment capacity for molecules of various lyophilicities.
                Bookmark

                Author and article information

                Journal
                Therapeutic Delivery
                Therapeutic Delivery
                Future Science Ltd
                2041-5990
                2041-6008
                November 2017
                November 2017
                : 8
                : 11
                : 967-985
                Affiliations
                [1 ]Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34116, Istanbul, Turkey
                Article
                10.4155/tde-2017-0075
                29061106
                21ccef2e-ebce-4c80-b273-377345eb6dd9
                © 2017
                History

                Quantitative & Systems biology,Biophysics
                Quantitative & Systems biology, Biophysics

                Comments

                Comment on this article