1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Road to the Beijing Winter Olympics and Beyond: Opinions and Perspectives on Physiology and Innovation in Winter Sport

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Beijing will host the 2022 Winter Olympics, and China strengthens research on various aspects to allow their athletes to compete successfully in winter sport. Simultaneously, Government-directed initiatives aim to increase public participation in recreational winter sport. These parallel developments allow research to advance knowledge and understanding of the physiological determinants of performance and health related to winter sport. Winter sport athletes often conduct a substantial amount of training with high volumes of low-to-moderate exercise intensity and lower volumes of high-intensity work. Moreover, much of the training occur at low ambient temperatures and winter sport athletes have high risk of developing asthma or asthma-related conditions, such as exercise-induced bronchoconstriction. The high training volumes require optimal nutrition with increased energy and dietary protein requirement to stimulate muscle protein synthesis response in the post-exercise period. Whether higher protein intake is required in the cold should be investigated. Cross-country skiing is performed mostly in Northern hemisphere with a strong cultural heritage and sporting tradition. It is expected that innovative initiatives on recruitment and training during the next few years will target to enhance performance of Chinese athletes in classical endurance-based winter sport. The innovation potential coupled with resourcing and population may be substantial with the potential for China to become a significant winter sport nation. This paper discusses the physiological aspects of endurance training and performance in winter sport highlighting areas where innovation may advance in athletic performance in cold environments. In addition, to ensure sustainable development of snow sport, a quality ski patrol and rescue system is recommended for the safety of increasing mass participation.

          Related collections

          Most cited references97

          • Record: found
          • Abstract: found
          • Article: not found

          Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis.

          Quantity and timing of protein ingestion are major factors regulating myofibrillar protein synthesis (MPS). However, the effect of specific ingestion patterns on MPS throughout a 12 h period is unknown. We determined how different distributions of protein feeding during 12 h recovery after resistance exercise affects anabolic responses in skeletal muscle. Twenty-four healthy trained males were assigned to three groups (n = 8/group) and undertook a bout of resistance exercise followed by ingestion of 80 g of whey protein throughout 12 h recovery in one of the following protocols: 8 × 10 g every 1.5 h (PULSE); 4 × 20 g every 3 h (intermediate: INT); or 2 × 40 g every 6 h (BOLUS). Muscle biopsies were obtained at rest and after 1, 4, 6, 7 and 12 h post exercise. Resting and post-exercise MPS (l-[ring-(13)C6] phenylalanine), and muscle mRNA abundance and cell signalling were assessed. All ingestion protocols increased MPS above rest throughout 1-12 h recovery (88-148%, P INT>PULSE hierarchy in magnitude of phosphorylation. MuRF-1 and SLC38A2 mRNA were differentially expressed with BOLUS. In conclusion, 20 g of whey protein consumed every 3 h was superior to either PULSE or BOLUS feeding patterns for stimulating MPS throughout the day. This study provides novel information on the effect of modulating the distribution of protein intake on anabolic responses in skeletal muscle and has the potential to maximize outcomes of resistance training for attaining peak muscle mass.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Limiting factors for maximum oxygen uptake and determinants of endurance performance.

            In the exercising human, maximal oxygen uptake (VO2max) is limited by the ability of the cardiorespiratory system to deliver oxygen to the exercising muscles. This is shown by three major lines of evidence: 1) when oxygen delivery is altered (by blood doping, hypoxia, or beta-blockade), VO2max changes accordingly; 2) the increase in VO2max with training results primarily from an increase in maximal cardiac output (not an increase in the a-v O2 difference); and 3) when a small muscle mass is overperfused during exercise, it has an extremely high capacity for consuming oxygen. Thus, O2 delivery, not skeletal muscle O2 extraction, is viewed as the primary limiting factor for VO2max in exercising humans. Metabolic adaptations in skeletal muscle are, however, critical for improving submaximal endurance performance. Endurance training causes an increase in mitochondrial enzyme activities, which improves performance by enhancing fat oxidation and decreasing lactic acid accumulation at a given VO2. VO2max is an important variable that sets the upper limit for endurance performance (an athlete cannot operate above 100% VO2max, for extended periods). Running economy and fractional utilization of VO2max also affect endurance performance. The speed at lactate threshold (LT) integrates all three of these variables and is the best physiological predictor of distance running performance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genomic predictors of the maximal O₂ uptake response to standardized exercise training programs.

              Low cardiorespiratory fitness is a powerful predictor of morbidity and cardiovascular mortality. In 473 sedentary adults, all whites, from 99 families of the Health, Risk Factors, Exercise Training, and Genetics (HERITAGE) Family Study, the heritability of gains in maximal O(2) uptake (VO(2max)) after exposure to a standardized 20-wk exercise program was estimated at 47%. A genome-wide association study based on 324,611 single-nucleotide polymorphisms (SNPs) was undertaken to identify SNPs associated with improvements in VO(2max) Based on single-SNP analysis, 39 SNPs were associated with the gains with P < 1.5 × 10(-4). Stepwise multiple regression analysis of the 39 SNPs identified a panel of 21 SNPs that accounted for 49% of the variance in VO(2max) trainability. Subjects who carried ≤9 favorable alleles at these 21 SNPs improved their VO(2max) by 221 ml/min, whereas those who carried ≥19 of these alleles gained, on average, 604 ml/min. The strongest association was with rs6552828, located in the acyl-CoA synthase long-chain member 1 (ACSL1) gene, which accounted by itself for ~6% of the training response of VO(2max). The genes nearest to the SNPs that were the strongest predictors were PR domain-containing 1 with ZNF domain (PRDM1); glutamate receptor, ionotropic, N-methyl-D-aspartate 3A (GRIN3A); K(+) channel, voltage gated, subfamily H, member 8 (KCNH8); and zinc finger protein of the cerebellum 4 (ZIC4). The association with the SNP nearest to ZIC4 was replicated in 40- to 65-yr-old, sedentary, overweight, and dyslipidemic subjects trained in Studies of a Targeted Risk Reduction Intervention Through Defined Exercise (STRRIDE; n = 183). Two SNPs were replicated in sedentary obese white women exercise trained in the Dose Response to Exercise (DREW) study (n = 112): rs1956197 near dishevelled associated activator of morphogenesis 1 (DAAM1) and rs17117533 in the vicinity of necdin (NDN). The association of SNPs rs884736 in the calmodulin-binding transcription activator 1 (CAMTA1) locus and rs17581162 ~68 kb upstream from regulator of G protein signaling 18 (RGS18) with the gains in VO(2max) in HERITAGE whites were replicated in HERITAGE blacks (n = 247). These genomic predictors of the response of Vo(2max) to regular exercise provide new targets for the study of the biology of fitness and its adaptation to regular exercise. Large-scale replication studies are warranted.
                Bookmark

                Author and article information

                Contributors
                jorgen.jensen@nih.no
                Journal
                J. of SCI. IN SPORT AND EXERCISE
                Journal of Science in Sport and Exercise
                Springer Singapore (Singapore )
                2096-6709
                2662-1371
                27 September 2021
                27 September 2021
                : 1-11
                Affiliations
                [1 ]GRID grid.411614.7, ISNI 0000 0001 2223 5394, Department of Exercise Physiology, , Beijing Sport University, ; Beijing, China
                [2 ]GRID grid.257949.4, ISNI 0000 0000 9608 0631, Department of Health Promotion and Physical Education, School of Health Sciences and Human Performance, , Ithaca College, ; Ithaca, NY 14850 USA
                [3 ]GRID grid.5254.6, ISNI 0000 0001 0674 042X, Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, , University of Copenhagen, ; Copenhagen, Denmark
                [4 ]GRID grid.148374.d, ISNI 0000 0001 0696 9806, School of Sport, Exercise, and Nutrition, College of Health, , Massey University, ; Auckland, New Zealand
                [5 ]GRID grid.7728.a, ISNI 0000 0001 0724 6933, Centre for Human Performance, Exercise and Rehabilitation, , Brunel University London, ; Uxbridge, UK
                [6 ]GRID grid.412285.8, ISNI 0000 0000 8567 2092, Department of Physical Performance, , Norwegian School of Sport Sciences, ; Ullevål Stadion, P.O.Box 4012, 0806 Oslo, Norway
                Author information
                http://orcid.org/0000-0001-5851-220X
                Article
                133
                10.1007/s42978-021-00133-1
                8475427
                21f8a19c-f53f-4057-9e23-3f1d4bb216ea
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 16 March 2021
                : 24 July 2021
                Funding
                Funded by: State Administration of Foreign Experts Affairs (CN)
                Award ID: Grant No. G20190001616
                Award Recipient :
                Funded by: Norwegian School Of Sport Sciences - The Library
                Categories
                Review Article

                exercise physiology,endurance training,maximal oxygen uptake,temperature,protein,asthma,cross-country skiing ,ski patrol

                Comments

                Comment on this article