21
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to the journal, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Are type III–IV muscle afferents required for a normal steady-state exercise hyperpnoea in humans?

      research-article
      1 , 2 , 3
      The Journal of Physiology
      Blackwell Publishing Ltd

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          When tested in isolation, stimuli associated with respiratory CO 2 exchange, feedforward central command and type III–IV muscle afferent feedback have each been shown to be capable of eliciting exercise-like cardio-ventilatory responses, but their relative contributions in a setting of physiological exercise remains controversial. We reasoned that in order to determine whether any of these regulators are obligatory to the exercise hyperpnoea each needs to be removed or significantly diminished in a setting of physiological steady-state exercise, during which all recognized stimuli (and other potential modulators) are normally operative. In the past few years we and others have used intrathecal fentanyl, a μ-opiate receptor agonist, in humans to reduce the input from type III–IV opiate-sensitive muscle afferents. During various types of intensities and durations of exercise a sustained hypoventilation, as well as reduced systemic pressure and cardioacceleration, were consistently observed with this blockade. These data provide the basis for the hypothesis that type III–IV muscle afferents are obligatory to the hyperpnoea of mild to moderate intensity rhythmic, large muscle, steady-state exercise. We discuss the limitations of these studies, the reasons for their disagreement with previous negative findings, the nature of the muscle afferent feedback stimulus and the need for future investigations.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Reflex control of the circulation during exercise: chemoreflexes and mechanoreflexes.

          The overall scheme for control is as follows: central command sets basic patterns of cardiovascular effector activity, which is modulated via muscle chemo- and mechanoreflexes and arterial mechanoreflexes (baroreflexes) as appropriate error signals develop. A key question is whether the primary error corrected is a mismatch between blood flow and metabolism (a flow error that accumulates muscle metabolites that activate group III and IV chemosensitive muscle afferents) or a mismatch between cardiac output (CO) and vascular conductance [a blood pressure (BP) error] that activates the arterial baroreflex and raises BP. Reduction in muscle blood flow to a threshold for the muscle chemoreflex raises muscle metabolite concentration and reflexly raises BP by activating chemosensitive muscle afferents. In isometric exercise, sympathetic nervous activity (SNA) is increased mainly by muscle chemoreflex whereas central command raises heart rate (HR) and CO by vagal withdrawal. Cardiovascular control changes for dynamic exercise with large muscles. At exercise onset, central command increases HR by vagal withdrawal and "resets" the baroreflex to a higher BP. As long as vagal withdrawal can raise HR and CO rapidly so that BP rises quickly to its higher operating point, there is no mismatch between CO and vascular conductance (no BP error) and SNA does not increase. Increased SNA occurs at whatever HR (depending on species) exceeds the range of vagal withdrawal; the additional sympathetically mediated rise in CO needed to raise BP to its new operating point is slower and leads to a BP error. Sympathetic vasoconstriction is needed to complete the rise in BP. The baroreflex is essential for BP elevation at onset of exercise and for BP stabilization during mild exercise (subthreshold for chemoreflex), and it can oppose or magnify the chemoreflex when it is activated at higher work rates. Ultimately, when vascular conductance exceeds cardiac pumping capacity in the most severe exercise both chemoreflex and baroreflex must maintain BP by vasoconstricting active muscle.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Opioid-mediated muscle afferents inhibit central motor drive and limit peripheral muscle fatigue development in humans.

            We investigated the role of somatosensory feedback from locomotor muscles on central motor drive (CMD) and the development of peripheral fatigue during high-intensity endurance exercise. In a double-blind, placebo-controlled design, eight cyclists randomly performed three 5 km time trials: control, interspinous ligament injection of saline (5K(Plac), L3-L4) or intrathecal fentanyl (5K(Fent), L3-L4) to impair cortical projection of opioid-mediated muscle afferents. Peripheral quadriceps fatigue was assessed via changes in force output pre- versus postexercise in response to supramaximal magnetic femoral nerve stimulation (DeltaQ(tw)). The CMD during the time trials was estimated via quadriceps electromyogram (iEMG). Fentanyl had no effect on quadriceps strength. Impairment of neural feedback from the locomotor muscles increased iEMG during the first 2.5 km of 5K(Fent) versus 5K(Plac) by 12 +/- 3% (P < 0.05); during the second 2.5 km, iEMG was similar between trials. Power output was also 6 +/- 2% higher during the first and 11 +/- 2% lower during the second 2.5 km of 5K(Fent) versus 5K(Plac) (both P < 0.05). Capillary blood lactate was higher (16.3 +/- 0.5 versus 12.6 +/- 1.0%) and arterial haemoglobin O(2) saturation was lower (89 +/- 1 versus 94 +/- 1%) during 5K(Fent) versus 5K(Plac). Exercise-induced DeltaQ(tw) was greater following 5K(Fent) versus 5K(Plac) (-46 +/- 2 versus -33 +/- 2%, P < 0.001). Our results emphasize the critical role of somatosensory feedback from working muscles on the centrally mediated determination of CMD. Attenuated afferent feedback from exercising locomotor muscles results in an overshoot in CMD and power output normally chosen by the athlete, thereby causing a greater rate of accumulation of muscle metabolites and excessive development of peripheral muscle fatigue.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reflex cardiovascular and respiratory responses originating in exercising muscle.

              1. In anaesthetized and decerebrate cats isometric exercise of the hind limb muscles was elicited by stimulating the spinal ventral roots L7-S1. This caused a rise in arterial blood pressure, with small increases in heart rate and pulmonary ventilation. These changes were abolished by cutting the dorsal roots receiving afferents from the exercising muscle.2. When the triceps surae muscle was made to exercise by ventral root stimulation, occlusion of the femoral artery and vein through and beyond the period of exercise caused the blood pressure to remain raised until the occlusion was removed. The ventilatory and heart rate responses were not markedly altered or prolonged by such circulatory occlusion.3. Injection of small volumes of 5% NaCl or isotonic KCl into the arterial blood supplying hind limb muscles gave cardiovascular and respiratory responses similar to those evoked by exercise. Like the responses to exercise, these responses were abolished by dorsal root section.4. Direct current anodal block of the dorsal roots receiving afferents from the exercising muscle was used to block preferentially large myelinated fibres: this form of block did not abolish the evoked cardiovascular and respiratory responses. Local anaesthetic block of the dorsal roots was used to block preferentially unmyelinated and small myelinated fibres: this form of block abolished the cardiovascular and respiratory responses. It is concluded that the reflex responses are mediated by fibres within groups III and IV (small myelinated fibres and unmyelinated fibres).
                Bookmark

                Author and article information

                Journal
                J Physiol
                J. Physiol. (Lond.)
                tjp
                The Journal of Physiology
                Blackwell Publishing Ltd
                0022-3751
                1469-7793
                01 February 2014
                30 September 2013
                : 592
                : 3
                : 463-474
                Affiliations
                [1 ]John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin – Madison Madison, WI, USA
                [2 ]Faculty of Sports Sciences, University of Nice Sophia Antipolis Nice, France
                [3 ]Department of Internal Medicine, University of Utah Salt Lake City, UT, USA
                Author notes
                Corresponding author: J. A. Dempsey: University of Wisconsin – Madison, 1300 University Ave, Room 4245 MSC, Madison, WI 53706-1532, USA. Email: jdempsey@ 123456wisc.edu
                Article
                10.1113/jphysiol.2013.261925
                3930433
                24000177
                2201abe9-9c9e-4a36-b672-f58d33767e48
                © 2013 The Authors. The Journal of Physiology © 2013 The Physiological Society

                This review was presented at the symposium Recent advances in understanding mechanisms regulating breathing during exercise, which took place at Experimental Biology 2013, Boston, MA, USA on 24 April 2013.

                History
                : 10 July 2013
                : 27 August 2013
                Categories
                Symposium Section Reviews: Mechanisms Regulating Breathing During Exercise

                Human biology
                Human biology

                Comments

                Comment on this article