1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fabrication of Electrospun PVA/Zein/Gelatin Based Active Packaging for Quality Maintenance of Different Food Items

      , , ,
      Polymers
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this research, electrospun PVA/Zein/Gelatin based tri-component active food packaging has been fabricated to enhance the shelf life of food by assuring the food quality (freshness, taste, brittleness, color, etc.) for longer. Electrospinning imparts good morphological properties along with breathability in nanofibrous mats. Electrospun active food packaging has been characterized to investigate the morphological, thermal, mechanical, chemical, antibacterial and antioxidant properties. Results of all tests indicated that the PVA/Zein/Gelatin nanofiber sheet possessed good morphology, thermal stability, mechanical strength, good antibacterial properties along with excellent antioxidant properties, which makes it the most suitable food packaging for increasing the shelf life of different food items like sweet potatoes, potatoes and kimchi. Shelf life of sweet potatoes and potatoes was observed for a period of 50 days, and shelf life of the kimchi was observed for a period of 30 days. It was concluded that nanofibrous food packaging may enhance the shelf life of fruit and vegetables because of their better breathability and antioxidant properties.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Reusability Comparison of Melt-Blown vs Nanofiber Face Mask Filters for Use in the Coronavirus Pandemic

          Shortage of face masks is a current critical concern since the emergence of coronavirus-2 or SARS-CoV-2 (COVID-19). In this work, we compared the melt-blown (MB) filter, which is commonly used for the N95 face mask, with nanofiber (NF) filter, which is gradually used as an effective mask filter, to evaluate their reusability. Extensive characterizations were performed repeatedly to evaluate some performance parameters, which include filtration efficiency, airflow rate, and surface and morphological properties, after two types of cleaning treatments. In the first cleaning type, samples were dipped in 75% ethanol for a predetermined duration. In the second cleaning type, 75% ethanol was sprayed on samples. It was found that filtration efficiency of MB filter was significantly dropped after treatment with ethanol, while the NF filter exhibited consistent high filtration efficiency regardless of cleaning types. In addition, the NF filter showed better cytocompatibility than the MB filter, demonstrating its harmlessness on the human body. Regardless of ethanol treatments, surfaces of both filter types maintained hydrophobicity, which can sufficiently prevent wetting by moisture and saliva splash to prohibit not only pathogen transmission but also bacterial growth inside. On the basis of these comparative evaluations, the wider use of the NF filter for face mask applications is highly recommended, and it can be reused multiple times with robust filtration efficiency. It would be greatly helpful to solve the current shortage issue of face masks and significantly improve safety for front line fighters against coronavirus disease.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Characterization of the morphology and thermal properties of Zein Prolamine nanostructures obtained by electrospinning

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mussel-Inspired Electrospun Nanofibers Functionalized with Size-Controlled Silver Nanoparticles for Wound Dressing Application.

              Electrospun nanofibers that contain silver nanoparticles (AgNPs) have a strong antibacterial activity that is beneficial to wound healing. However, most of the literature available on the bactericidal effects of this material is based on the use of AgNPs with uncontrolled size, shape, surface properties, and degree of aggregation. In this study, we report the first versatile synthesis of novel catechol moieties presenting electrospun nanofibers functionalized with AgNPs through catechol redox chemistry. The synthetic strategy allows control of the size and amount of AgNPs on the surface of nanofibers with the minimum degree of aggregation. We also evaluated the rate of release of the AgNPs, the biocompatibility of the nanofibers, the antibacterial activity in vitro, and the wound healing capacity in vivo. Our results suggest that these silver-releasing nanofibers have great potential for use in wound healing applications.
                Bookmark

                Author and article information

                Contributors
                Journal
                POLYCK
                Polymers
                Polymers
                MDPI AG
                2073-4360
                June 2023
                May 31 2023
                : 15
                : 11
                : 2538
                Article
                10.3390/polym15112538
                22034c3a-78ca-4ff7-aa70-b5f13746044a
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article