Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular mechanisms of cancer cachexia‐related loss of skeletal muscle mass: data analysis from preclinical and clinical studies

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cancer cachexia is a systemic hypoanabolic and catabolic syndrome that diminishes the quality of life of cancer patients, decreases the efficiency of therapeutic strategies and ultimately contributes to decrease their lifespan. The depletion of skeletal muscle compartment, which represents the primary site of protein loss during cancer cachexia, is of very poor prognostic in cancer patients. In this review, we provide an extensive and comparative analysis of the molecular mechanisms involved in the regulation of skeletal muscle mass in human cachectic cancer patients and in animal models of cancer cachexia. We summarize data from preclinical and clinical studies investigating how the protein turnover is regulated in cachectic skeletal muscle and question to what extent the transcriptional and translational capacities, as well as the proteolytic capacity (ubiquitin–proteasome system, autophagy–lysosome system and calpains) of skeletal muscle are involved in the cachectic syndrome in human and animals. We also wonder how regulatory mechanisms such as insulin/IGF1–AKT–mTOR pathway, endoplasmic reticulum stress and unfolded protein response, oxidative stress, inflammation (cytokines and downstream IL1ß/TNFα–NF‐κB and IL6–JAK–STAT3 pathways), TGF‐ß signalling pathways (myostatin/activin A‐SMAD2/3 and BMP‐SMAD1/5/8 pathways), as well as glucocorticoid signalling, modulate skeletal muscle proteostasis in cachectic cancer patients and animals. Finally, a brief description of the effects of various therapeutic strategies in preclinical models is also provided. Differences in the molecular and biochemical responses of skeletal muscle to cancer cachexia between human and animals (protein turnover rates, regulation of ubiquitin‐proteasome system and myostatin/activin A‐SMAD2/3 signalling pathways) are highlighted and discussed. Identifying the various and intertwined mechanisms that are deregulated during cancer cachexia and understanding why they are decontrolled will provide therapeutic targets for the treatment of skeletal muscle wasting in cancer patients.

          Related collections

          Most cited references120

          • Record: found
          • Abstract: found
          • Article: not found

          Definition and classification of cancer cachexia: an international consensus.

          To develop a framework for the definition and classification of cancer cachexia a panel of experts participated in a formal consensus process, including focus groups and two Delphi rounds. Cancer cachexia was defined as a multifactorial syndrome defined by an ongoing loss of skeletal muscle mass (with or without loss of fat mass) that cannot be fully reversed by conventional nutritional support and leads to progressive functional impairment. Its pathophysiology is characterised by a negative protein and energy balance driven by a variable combination of reduced food intake and abnormal metabolism. The agreed diagnostic criterion for cachexia was weight loss greater than 5%, or weight loss greater than 2% in individuals already showing depletion according to current bodyweight and height (body-mass index [BMI] <20 kg/m(2)) or skeletal muscle mass (sarcopenia). An agreement was made that the cachexia syndrome can develop progressively through various stages--precachexia to cachexia to refractory cachexia. Severity can be classified according to degree of depletion of energy stores and body protein (BMI) in combination with degree of ongoing weight loss. Assessment for classification and clinical management should include the following domains: anorexia or reduced food intake, catabolic drive, muscle mass and strength, functional and psychosocial impairment. Consensus exists on a framework for the definition and classification of cancer cachexia. After validation, this should aid clinical trial design, development of practice guidelines, and, eventually, routine clinical management. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer-associated cachexia

            Cancer-associated cachexia is a disorder characterized by loss of body weight with specific losses of skeletal muscle and adipose tissue. Cachexia is driven by a variable combination of reduced food intake and metabolic changes, including elevated energy expenditure, excess catabolism and inflammation. Cachexia is highly associated with cancers of the pancreas, oesophagus, stomach, lung, liver and bowel; this group of malignancies is responsible for half of all cancer deaths worldwide. Cachexia involves diverse mediators derived from the cancer cells and cells within the tumour microenvironment, including inflammatory and immune cells. In addition, endocrine, metabolic and central nervous system perturbations combine with these mediators to elicit catabolic changes in skeletal and cardiac muscle and adipose tissue. At the tissue level, mechanisms include activation of inflammation, proteolysis, autophagy and lipolysis. Cachexia associates with a multitude of morbidities encompassing functional, metabolic and immune disorders as well as aggravated toxicity and complications of cancer therapy. Patients experience impaired quality of life, reduced physical, emotional and social well-being and increased use of healthcare resources. To date, no effective medical intervention completely reverses cachexia and there are no approved drug therapies. Adequate nutritional support remains a mainstay of cachexia therapy, whereas drugs that target overactivation of catabolic processes, cell injury and inflammation are currently under investigation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival.

              Muscle wasting and cachexia have long been postulated to be key determinants of cancer-related death, but there has been no direct experimental evidence to substantiate this hypothesis. Here, we show that in several cancer cachexia models, pharmacological blockade of ActRIIB pathway not only prevents further muscle wasting but also completely reverses prior loss of skeletal muscle and cancer-induced cardiac atrophy. This treatment dramatically prolongs survival, even of animals in which tumor growth is not inhibited and fat loss and production of proinflammatory cytokines are not reduced. ActRIIB pathway blockade abolished the activation of the ubiquitin-proteasome system and the induction of atrophy-specific ubiquitin ligases in muscles and also markedly stimulated muscle stem cell growth. These findings establish a crucial link between activation of the ActRIIB pathway and the development of cancer cachexia. Thus ActRIIB antagonism is a promising new approach for treating cancer cachexia, whose inhibition per se prolongs survival. Copyright 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                damien.freyssenet@univ-st-etienne.fr
                Journal
                J Cachexia Sarcopenia Muscle
                J Cachexia Sarcopenia Muscle
                10.1007/13539.2190-6009
                JCSM
                Journal of Cachexia, Sarcopenia and Muscle
                John Wiley and Sons Inc. (Hoboken )
                2190-5991
                2190-6009
                02 March 2023
                June 2023
                : 14
                : 3 ( doiID: 10.1002/jcsm.v14.3 )
                : 1150-1167
                Affiliations
                [ 1 ] Laboratoire Interuniversitaire de Biologie de la Motricité EA 7424, Univ Lyon Université Jean Monnet Saint‐Etienne Saint‐Priest‐en‐Jarez France
                [ 2 ] LBEPS, Univ Evry, IRBA, Université Paris Saclay Evry France
                Author notes
                [*] [* ] Correspondence to: Damien Freyssenet, Laboratoire Interuniversitaire de Biologie de la Motricité, Faculté de Médecine, 10 rue de la Marandière, 42 270 Saint Priest en Jarez, France. Email : damien.freyssenet@ 123456univ-st-etienne.fr
                Author information
                https://orcid.org/0000-0002-6130-8207
                Article
                JCSM13073 JCSM-D-21-00459
                10.1002/jcsm.13073
                10235899
                36864755
                222be3ff-b7a5-4594-9977-31c2b109c137
                © 2022 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of Society on Sarcopenia, Cachexia and Wasting Disorders.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

                History
                : 15 June 2022
                : 28 October 2021
                : 14 August 2022
                Page count
                Figures: 4, Tables: 0, Pages: 18, Words: 8558
                Funding
                Funded by: Ministère de l'Enseignement Supérieur de la Recherche et de l'Innovation , doi 10.13039/100012948;
                Categories
                Review
                Reviews
                Custom metadata
                2.0
                June 2023
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.2.8 mode:remove_FC converted:02.06.2023

                Orthopedics
                autophagy–lysosome,cancer cachexia,glucocorticoids,inflammation,myostatin,oxidative stress,proteostasis,skeletal muscle,ubiquitin–proteasome

                Comments

                Comment on this article