16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structural and functional changes in gap junctional intercellular communication in a rat model of overactive bladder syndrome induced by partial bladder outlet obstruction

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of the present study was to investigate the association between connexin (Cx)43 levels and alterations in gap junctional mediation of intercellular communication in overactive bladder syndrome (OAB), and to examine the effects of connexin inhibitor on this condition. Adult female Wistar rats with OAB following partial bladder outlet obstruction (PBBO) (OAB group, n=37) and sham-operated rats (control group, n=17) were studied. The ultrastructure of the rat detrusor was observed by transmission electron microscopy and the protein expression levels of Cx43 were analyzed using western blot analysis. Furthermore, bladder detrusor cells in both groups were cultured and cells in the OAB group were randomly divided into ten groups. In nine of these groups, 18-β glycyrrhetinic acid (18β-GA) was administered at various doses and durations. All groups were compared using fluorescence redistribution after photobleaching and a laser scanning confocal microscope. Cystometry demonstrated that gap junctions were an abundant mechanism among adjacent cells, and Cx43 protein expression levels were increased in the OAB group following 6 weeks of obstruction, as compared with the control group. Mean fluorescence recovery rates in the OAB group were significantly increased, as compared with the control group (P<0.01). Mean fluorescence recovery rates were noted following 18β-GA administration. These results suggested that upregulation of Cx43 induces structural and functional alterations in gap junctional intercellular communication following PBOO, and connexin inhibitors may be a novel therapeutic strategy for the clinical treatment of OAB.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of gap junctions by phosphorylation of connexins.

          P Lampe, A. Lau (2000)
          Gap junctions are a unique type of intercellular junction found in most animal cell types. Gap junctions permit the intercellular passage of small molecules and have been implicated in diverse biological processes, such as development, cellular metabolism, and cellular growth control. In vertebrates, gap junctions are composed of proteins from the "connexin" gene family. The majority of connexins are modified posttranslationally by phosphorylation, primarily on serine amino acids; however, phosphotyrosine has also been detected in connexin from cells coexpressing nonreceptor tyrosine protein kinases. Connexins are targeted by numerous protein kinases, of which some have been identified: protein kinase C, mitogen-activated protein kinase, and the v-Src tyrosine protein kinase. Phosphorylation has been implicated in the regulation of a broad variety of connexin processes, such as the trafficking, assembly/disassembly, degradation, as well as the gating of gap junction channels. This review examines the consequences of connexin phosphorylation for the regulation of gap junctional communication.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evolutionary analyses of gap junction protein families.

            Gap junctions are intercellular channels that link the cytoplasm of neighboring cells in animals, enabling straight passage of ions and small molecules. Two different protein families, pannexins and connexins, form these channels. Pannexins are present in all eumetazoans but echinoderms (and are termed innexins in non-chordates) whereas connexins are exclusive of chordates. Despite little sequence similarity, both types of proteins assemble into a common secondary structure with four hydrophobic transmembrane domains linked by one cytoplasmic and two extracellular loops. Although all pannexins and connexins are packed into hexamers forming single channels, only non-chordate pannexins (innexins) and connexins form gap junctions. Here, we revisit and review evolutionary features of pannexin and connexin protein families. For that, we retrieved members of both families from several complete genome projects, and searched for conserved positions in the independent alignments of pannexin and connexin protein families. In addition, the degree of evolutionary conservation was mapped onto the 3D structure of a connexon (i.e. the assembly of six connexins). Finally, we reconstructed independent phylogenies of pannexins and connexins using probabilistic methods of inference. Non-chordate (Drosophila and Caenorhabditis) pannexins (i.e. innexins) were recovered as sister group of chordate pannexins, which included Ciona paralogs and vertebrate pannexins (pannexin-1 and pannexin-3 were recovered as sister groups to the exclusion of pannexin-2). In the reconstructed phylogeny of connexins, subfamilies α and β were recovered as sister groups to the exclusion of subfamily γ, whereas δ and (the newly identified) ζ subfamilies were recovered at the base of the tree. A sixth highly divergent subfamily (ε) was not included in the phylogenetic analyses. Several groups of paralogy were identified within each subfamily. This article is part of a Special Issue entitled: The Communicating junctions, roles and dysfunctions. Copyright © 2012 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gap junction proteins on the move: connexins, the cytoskeleton and migration.

              Connexin43 (Cx43) has roles in cell-cell communication as well as channel independent roles in regulating motility and migration. Loss of function approaches to decrease Cx43 protein levels in neural cells result in reduced migration of neurons during cortical development in mice and impaired glioma tumor cell migration. In other cell types, correlations between Cx43 expression and cell morphology, adhesion, motility and migration have been noted. In this review we will discuss the common themes that have been revealed by a detailed comparison of the published results of neuronal cells with that of other cell types. In brief, these comparisons clearly show differences in the stability and directionality of protrusions, polarity of movement, and migration, depending on whether a) residual Cx43 levels remain after siRNA or shRNA knockdown, b) Cx43 protein levels are not detectable as in cells from Cx43(-/-) knockout mice or in cells that normally have no endogenous Cx43 expression, c) gain-of-function approaches are used to express Cx43 in cells that have no endogenous Cx43 and, d) Cx43 is over-expressed in cells that already have low endogenous Cx43 protein levels. What is clear from our comparisons is that Cx43 expression influences the adhesiveness of cells and the directionality of cellular processes. These observations are discussed in light of the ability of cells to rearrange their cytoskeleton and move in an organized manner. This article is part of a Special Issue entitled: The Communicating junctions, roles and dysfunctions. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Exp Ther Med
                Exp Ther Med
                ETM
                Experimental and Therapeutic Medicine
                D.A. Spandidos
                1792-0981
                1792-1015
                June 2016
                11 April 2016
                11 April 2016
                : 11
                : 6
                : 2139-2146
                Affiliations
                [1 ]Department of Urology, Lanzhou General Hospital, Lanzhou Command, PLA, Lanzhou, Gansu 730050, P.R. China
                [2 ]Department of Urology, The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
                [3 ]Department of Urology, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610000, P.R. China
                [4 ]Department of Urology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
                Author notes
                Correspondence to: Dr Fenghai Zhou, Department of Urology, Lanzhou General Hospital, Lanzhou Command, PLA, 333 Binhe South Road, Lanzhou, Gansu 730050, P.R. China, E-mail: zhoufengh@ 123456163.co
                Article
                ETM-0-0-3246
                10.3892/etm.2016.3246
                4887945
                27284295
                22506f84-80b3-4bbd-b4b0-29fee126dbd4
                Copyright: © Zhou et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 21 November 2014
                : 22 December 2015
                Categories
                Articles

                Medicine
                overactive bladder syndrome,connexin 43,18β-ga,gap junctional intercellular communication

                Comments

                Comment on this article