11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The neuroprotective action of 3,3′-diindolylmethane against ischemia involves an inhibition of apoptosis and autophagy that depends on HDAC and AhR/CYP1A1 but not ERα/CYP19A1 signaling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There are no studies examining the effects of 3,3′-diindolylmethane (DIM) in neuronal cells subjected to ischemia. Little is also known about the roles of apoptosis and autophagy as well as AhR and ERα signaling and HDACs in DIM action. We demonstrated for the first time the strong neuroprotective capacity of DIM in mouse primary hippocampal cell cultures exposed to ischemia at early and later stages of neuronal development. The protective effects of DIM were mediated via inhibition of ischemia-induced apoptosis and autophagy that was accompanied by a decrease in AhR/CYP1A1 signaling and an increase in HDAC activity. DIM decreased the levels of pro-apoptotic factors, i.e., Fas, Caspase-3, and p38 mitogen-activated protein kinase (MAPK). DIM also reduced the protein levels of autophagy-related Beclin-1 (BECN1) and microtubule-associated proteins 1A/1B light chain (LC3), partially reversed the ischemia-induced decrease in Nucleoporin 62 (NUP62) and inhibited autophagosome formation. In addition, DIM completely reversed the ischemia-induced decrease in histone deacetylase (HDAC) activity in hippocampal neurons. Although DIM inhibited AhR/CYP1A1 signaling, it did not influence the protein expression levels of ERα and ERα-regulated CYP19A1 which are known to be controlled by AhR. This study demonstrated for the first time, that the neuroprotective action of 3,3′-diindolylmethane against ischemia involves an inhibition of apoptosis and autophagy and depends on AhR/CYP1A1 signaling and HDAC activity, thus creating the possibility of developing new therapeutic strategies that target neuronal degeneration at specific molecular levels.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis.

          The protease responsible for the cleavage of poly(ADP-ribose) polymerase and necessary for apoptosis has been purified and characterized. This enzyme, named apopain, is composed of two subunits of relative molecular mass (M(r)) 17K and 12K that are derived from a common proenzyme identified as CPP32. This proenzyme is related to interleukin-1 beta-converting enzyme (ICE) and CED-3, the product of a gene required for programmed cell death in Caenorhabditis elegans. A potent peptide aldehyde inhibitor has been developed and shown to prevent apoptotic events in vitro, suggesting that apopain/CPP32 is important for the initiation of apoptotic cell death.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The aryl hydrocarbon receptor complex.

            The heteromeric unliganded aryl hydrocarbon receptor complex (AHRC) contains the aryl hydrocarbon receptor monomer (AHR). Binding of polycyclic or halogenated aromatic hydrocarbon (PAH and HAH) ligand causes release of AHR, which then associates with the AHR nuclear translocator protein (ARNT) to generate the heterodimeric "transformed" AHRC. AHR and ARNT belong to a novel subclass of basic helix-loop-helix-containing transcription factors. The transformed AHRC binds xenobiotic responsive elements in responsive genes and turns on their transcription. Certain of these genes encode enzymes involved in the metabolic activation of PAHs to mutagenic derivatives. HAHs are not genotoxic: Their pathogenicity depends on the AHRC but not on their metabolism. Current research includes investigations directed towards delineating the pathways of HAH pathogenesis, ascertaining whether AHR can mediate signal transduction independently of DNA binding, understanding the mechanism of transcriptional activation, and investigating the potential roles of AHR and ARNT in development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Autophagy in ischemic stroke

              Autophagy is a self-eating cellular catabolic pathway, through which long-lived proteins, damaged organelles and misfolded proteins are degraded and recycled for the maintenance of cellular homeostasis and normal cellular functions. Autophagy plays an important homeostatic role in the regulation of cell survival. Accumulating evidence shows that autophagy is activated in various cell types in the brain such as neurons, glia cells, and brain microvascular cells upon ischemic stroke. However, the exact role and molecular mechanisms of autophagy process that is implicated in ischemic stroke have yet to be elucidated. This review aims to provide a comprehensive view of the regulation of autophagy in neurons, glia cells, and brain microvascular cells in response to ischemia stress. We also review the recent advance on the understanding of the involvement of autophagy in the pathological process during cerebral ischemic preconditioning, perconditioning and postconditioning. We propose a crosstalk between autophagy, necroptosis, and apoptosis that contribute to ischemic stroke. In addition, we discuss the interactions between autophagy and oxidative stress, mitochondrial dysfunction and endoplasmic reticulum stress.
                Bookmark

                Author and article information

                Contributors
                48-12-6623235 , kajta@if-pan.krakow.pl
                Journal
                Apoptosis
                Apoptosis
                Apoptosis
                Springer US (New York )
                1360-8185
                1573-675X
                18 February 2019
                18 February 2019
                2019
                : 24
                : 5
                : 435-452
                Affiliations
                [1 ]ISNI 0000 0001 1958 0162, GRID grid.413454.3, Department of Experimental Neuroendocrinology, Laboratory of Molecular Neuroendocrinology, Institute of Pharmacology, , Polish Academy of Sciences, ; Smetna Street 12, 31-343 Krakow, Poland
                [2 ]ISNI 0000 0001 1958 0162, GRID grid.413454.3, Department of Experimental Neuroendocrinology, Institute of Pharmacology, , Polish Academy of Sciences, ; Smetna Street 12, 31-343 Krakow, Poland
                [3 ]ISNI 0000 0001 1958 0162, GRID grid.413454.3, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Institute of Pharmacology, , Polish Academy of Sciences, ; Smetna Street 12, 31-343 Krakow, Poland
                Author information
                http://orcid.org/0000-0002-5732-2794
                Article
                1522
                10.1007/s10495-019-01522-2
                6522467
                30778709
                229ba7bd-1b13-417c-92ee-11f0a1e93222
                © The Author(s) 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                Funding
                Funded by: Instytut Farmakologii, Polskiej Akademii Nauk (PL)
                Award ID: Statuatory funds
                Award Recipient :
                Categories
                Article
                Custom metadata
                © Springer Science+Business Media, LLC, part of Springer Nature 2019

                Molecular biology
                3,3′-diindolylmethane,ischemia,neuroprotection,apoptosis,autophagy,ahr
                Molecular biology
                3,3′-diindolylmethane, ischemia, neuroprotection, apoptosis, autophagy, ahr

                Comments

                Comment on this article