11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influence of the Degree of Cure in the Bulk Properties of Graphite Nanoplatelets Nanocomposites Printed via Stereolithography

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this work, we report on the fabrication via stereolithography (SLA) of acrylic-based nanocomposites using graphite nanoplatelets (GNPs) as an additive. GNPs are able to absorb UV–Vis radiation, thus blocking partial or totally the light path of the SLA laser. Based on this, we identified a range of GNP concentrations below 2.5 wt %, where nanocomposites can be successfully printed. We show that, even though GNP is well-dispersed along the polymeric matrix, nanocomposites presented lower degrees of cure and therefore worse mechanical properties when compared with pristine resin. However, a post-processing at 60 °C with UV light for 1 h eliminates this difference in the degree of cure, reaching values above 90% in all cases. In these conditions, the tensile strength is enhanced for 0.5 wt % GNP nanocomposites, while the stiffness is increased for 0.5–1.0 wt % GNP nanocomposites. Finally, we also demonstrate that 2.5 wt % GNP nanocomposites possess characteristic properties of semiconductors, which allows them to be used as electrostatic dispersion materials.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: not found
          • Article: not found

          3D printing of polymer matrix composites: A review and prospective

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Mechanical characterization of 3D-printed polymers

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              3D Printable Graphene Composite

              In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C−1 from room temperature to its glass transition temperature (T g ), which is crucial to build minute thermal stress during the printing process.
                Bookmark

                Author and article information

                Journal
                Polymers (Basel)
                Polymers (Basel)
                polymers
                Polymers
                MDPI
                2073-4360
                12 May 2020
                May 2020
                : 12
                : 5
                : 1103
                Affiliations
                Departamento Ciencia de los Materiales, I. M. y Q. I., IMEYMAT, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, s/n, 11510 Puerto Real (Cádiz), Spain; sergio.molina@ 123456uca.es
                Author notes
                Author information
                https://orcid.org/0000-0003-2712-716X
                https://orcid.org/0000-0002-5221-2852
                Article
                polymers-12-01103
                10.3390/polym12051103
                7285314
                32408711
                22b1f666-7c12-41d0-b940-fa0d35afdee8
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 17 April 2020
                : 10 May 2020
                Categories
                Article

                3d printing,stereolithography,nanocomposites,correlation of bulk and molecular properties,physical methods of analysis,mechanical properties,electrical properties

                Comments

                Comment on this article