1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The role of GPR56/ADGRG1 in health and disease

      review-article
      a , b , c , d ,
      Biomedical Journal
      Chang Gung University
      Adhesion GPCR, G protein, Ligand, Signaling

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          GPR56/ADGRG1 is a versatile adhesion G protein-coupled receptor important in the physiological functions of the central and peripheral nervous systems, reproductive system, muscle hypertrophy, immune regulation, and hematopoietic stem cell generation. By contrast, aberrant expression or deregulated functions of GPR56 have been implicated in diverse pathological processes, including bilateral frontoparietal polymicrogyria, depression, and tumorigenesis. In this review article, we summarize and discuss the current understandings of the role of GPR56 in health and disease.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Article: not found

          Trends in GPCR drug discovery: new agents, targets and indications

          G protein-coupled receptors (GPCRs) are the most intensively studied drug targets, largely due to their substantial involvement in human pathophysiology and their pharmacological tractability. Here, we report the first analysis of all GPCR drugs and agents in clinical trials. This reveals the current trends across molecule types, drug targets and therapeutic indications, including showing that 481 drugs (~34% of all drugs approved by the FDA) act at 107 unique GPCR targets. Approximately 320 agents are currently in clinical trials, of which ~36% target 64 potentially novel GPCR targets without an approved drug, and the number of biological drugs, allosteric modulators and biased agonists has grown. The major disease indications for GPCR modulators show a shift towards diabetes, obesity, and Alzheimer’s disease, while other central nervous system disorders remain highly represented. The 227 (57%) non-olfactory GPCRs that are yet to be explored in clinical trials have broad untapped therapeutic potential, particularly in genetic and immune system disorders. Finally, we provide an interactive online resource to analyse and infer trends in GPCR drug discovery.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization.

            Sea anemones are seemingly primitive animals that, along with corals, jellyfish, and hydras, constitute the oldest eumetazoan phylum, the Cnidaria. Here, we report a comparative analysis of the draft genome of an emerging cnidarian model, the starlet sea anemone Nematostella vectensis. The sea anemone genome is complex, with a gene repertoire, exon-intron structure, and large-scale gene linkage more similar to vertebrates than to flies or nematodes, implying that the genome of the eumetazoan ancestor was similarly complex. Nearly one-fifth of the inferred genes of the ancestor are eumetazoan novelties, which are enriched for animal functions like cell signaling, adhesion, and synaptic transmission. Analysis of diverse pathways suggests that these gene "inventions" along the lineage leading to animals were likely already well integrated with preexisting eukaryotic genes in the eumetazoan progenitor.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints.

              The superfamily of G-protein-coupled receptors (GPCRs) is very diverse in structure and function and its members are among the most pursued targets for drug development. We identified more than 800 human GPCR sequences and simultaneously analyzed 342 unique functional nonolfactory human GPCR sequences with phylogenetic analyses. Our results show, with high bootstrap support, five main families, named glutamate, rhodopsin, adhesion, frizzled/taste2, and secretin, forming the GRAFS classification system. The rhodopsin family is the largest and forms four main groups with 13 sub-branches. Positions of the GPCRs in chromosomal paralogons regions indicate the importance of tetraploidizations or local gene duplication events for their creation. We also searched for "fingerprint" motifs using Hidden Markov Models delineating the putative inter-relationship of the GRAFS families. We show several common structural features indicating that the human GPCRs in the GRAFS families share a common ancestor. This study represents the first overall map of the GPCRs in a single mammalian genome. Our novel approach of analyzing such large and diverse sequence sets may be useful for studies on GPCRs in other genomes and divergent protein families.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomed J
                Biomed J
                Biomedical Journal
                Chang Gung University
                2319-4170
                2320-2890
                04 May 2021
                October 2021
                04 May 2021
                : 44
                : 5
                : 534-547
                Affiliations
                [a ]Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
                [b ]Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
                [c ]Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
                [d ]Department of Anatomic Pathology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
                Author notes
                [] Corresponding author. Department of Microbiology and Immunology, College of Medicine, Chang Gung University, 259, Wenhua 1st Rd., Gueishan, Taoyuan, 333 Taiwan. hhlin@ 123456mail.cgu.edu.tw
                Article
                S2319-4170(21)00044-5
                10.1016/j.bj.2021.04.012
                8640549
                34654683
                22d82b58-ed9f-4fb7-9753-f83bda4059ae
                © 2021 Chang Gung University. Publishing services by Elsevier B.V.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 19 February 2021
                : 28 April 2021
                Categories
                Review Article

                adhesion gpcr,g protein,ligand,signaling
                adhesion gpcr, g protein, ligand, signaling

                Comments

                Comment on this article