8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Climate change and local level disaster risk reduction planning: need, opportunities and challenges

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Constraints on future changes in climate and the hydrologic cycle.

          What can we say about changes in the hydrologic cycle on 50-year timescales when we cannot predict rainfall next week? Eventually, perhaps, a great deal: the overall climate response to increasing atmospheric concentrations of greenhouse gases may prove much simpler and more predictable than the chaos of short-term weather. Quantifying the diversity of possible responses is essential for any objective, probability-based climate forecast, and this task will require a new generation of climate modelling experiments, systematically exploring the range of model behaviour that is consistent with observations. It will be substantially harder to quantify the range of possible changes in the hydrologic cycle than in global-mean temperature, both because the observations are less complete and because the physical constraints are weaker.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Increasing risk of great floods in a changing climate.

            Radiative effects of anthropogenic changes in atmospheric composition are expected to cause climate changes, in particular an intensification of the global water cycle with a consequent increase in flood risk. But the detection of anthropogenically forced changes in flooding is difficult because of the substantial natural variability; the dependence of streamflow trends on flow regime further complicates the issue. Here we investigate the changes in risk of great floods--that is, floods with discharges exceeding 100-year levels from basins larger than 200,000 km(2)--using both streamflow measurements and numerical simulations of the anthropogenic climate change associated with greenhouse gases and direct radiative effects of sulphate aerosols. We find that the frequency of great floods increased substantially during the twentieth century. The recent emergence of a statistically significant positive trend in risk of great floods is consistent with results from the climate model, and the model suggests that the trend will continue.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Abrupt climate change.

              Large, abrupt, and widespread climate changes with major impacts have occurred repeatedly in the past, when the Earth system was forced across thresholds. Although abrupt climate changes can occur for many reasons, it is conceivable that human forcing of climate change is increasing the probability of large, abrupt events. Were such an event to recur, the economic and ecological impacts could be large and potentially serious. Unpredictability exhibited near climate thresholds in simple models shows that some uncertainty will always be associated with projections. In light of these uncertainties, policy-makers should consider expanding research into abrupt climate change, improving monitoring systems, and taking actions designed to enhance the adaptability and resilience of ecosystems and economies.
                Bookmark

                Author and article information

                Journal
                Mitigation and Adaptation Strategies for Global Change
                Mitig Adapt Strateg Glob Change
                Springer Nature
                1381-2386
                1573-1596
                January 2009
                June 2008
                : 14
                : 1
                : 7-33
                Article
                10.1007/s11027-008-9147-4
                230dd529-e4c7-4b8e-b8b4-315f000567d1
                © 2009
                History

                Comments

                Comment on this article