28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Human conditionally immortalized neural stem cells improve locomotor function after spinal cord injury in the rat

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          A growing number of studies have highlighted the potential of stem cell and more-differentiated neural cell transplantation as intriguing therapeutic approaches for neural repair after spinal cord injury (SCI).

          Methods

          A conditionally immortalized neural stem cell line derived from human fetal spinal cord tissue (SPC-01) was used to treat a balloon-induced SCI. SPC-01 cells were implanted into the lesion 1 week after SCI. To determine the feasibility of tracking transplanted stem cells, a portion of the SPC-01 cells was labeled with poly-L-lysine-coated superparamagnetic iron-oxide nanoparticles, and the animals grafted with labeled cells underwent magnetic resonance imaging. Functional recovery was evaluated by using the BBB and plantar tests, and lesion morphology, endogenous axonal sprouting and graft survival, and differentiation were analyzed. Quantitative polymerase chain reaction (qPCR) was used to evaluate the effect of transplanted SPC-01 cells on endogenous regenerative processes.

          Results

          Transplanted animals displayed significant motor and sensory improvement 2 months after SCI, when the cells robustly survived in the lesion and partially filled the lesion cavity. qPCR revealed the increased expression of rat and human neurotrophin and motor neuron genes. The grafted cells were immunohistologically positive for glial fibrillary acidic protein (GFAP); however, we found 25% of the cells to be positive for Nkx6.1, an early motor neuron marker. Spared white matter and the robust sprouting of growth-associated protein 43 (GAP43) + axons were found in the host tissue. Four months after SCI, the grafted cells matured into Islet2 + and choline acetyltransferase (ChAT) + neurons, and the graft was grown through with endogenous neurons. Grafted cells labeled with poly-L-lysine-coated superparamagnetic nanoparticles before transplantation were detected in the lesion on T 2-weighted images as hypointense spots that correlated with histologic staining for iron and the human mitochondrial marker MTCO2.

          Conclusions

          The transplantation of SPC-01 cells produced significant early functional improvement after SCI, suggesting an early neurotrophic action associated with long-term restoration of the host tissue, making the cells a promising candidate for future cell therapy in patients with SCI.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          GAP-43: an intrinsic determinant of neuronal development and plasticity.

          Several lines of investigation have helped clarify the role of GAP-43 (FI, B-50 or neuromodulin) in regulating the growth state of axon terminals. In transgenic mice, overexpression of GAP-43 leads to the spontaneous formation of new synapses and enhanced sprouting after injury. Null mutation of the GAP-43 gene disrupts axonal pathfinding and is generally lethal shortly after birth. Manipulations of GAP-43 expression likewise have profound effects on neurite outgrowth for cells in culture. GAP-43 appears to be involved in transducing intra- and extracellular signals to regulate cytoskeletal organization in the nerve ending. Phosphorylation by protein kinase C is particularly significant in this regard, and is linked with both nerve-terminal sprouting and long-term potentiation. In the brains of humans and other primates, high levels of GAP-43 persist in neocortical association areas and in the limbic system throughout life, where the protein might play an important role in mediating experience-dependent plasticity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice.

            We report that prospectively isolated, human CNS stem cells grown as neurospheres (hCNS-SCns) survive, migrate, and express differentiation markers for neurons and oligodendrocytes after long-term engraftment in spinal cord-injured NOD-scid mice. hCNS-SCns engraftment was associated with locomotor recovery, an observation that was abolished by selective ablation of engrafted cells by diphtheria toxin. Remyelination by hCNS-SCns was found in both the spinal cord injury NOD-scid model and myelin-deficient shiverer mice. Moreover, electron microscopic evidence consistent with synapse formation between hCNS-SCns and mouse host neurons was observed. Glial fibrillary acidic protein-positive astrocytic differentiation was rare, and hCNS-SCns did not appear to contribute to the scar. These data suggest that hCNS-SCns may possess therapeutic potential for CNS injury and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stem cells in human neurodegenerative disorders--time for clinical translation?

              Stem cell-based approaches have received much hype as potential treatments for neurodegenerative disorders. Indeed, transplantation of stem cells or their derivatives in animal models of neurodegenerative diseases can improve function by replacing the lost neurons and glial cells and by mediating remyelination, trophic actions, and modulation of inflammation. Endogenous neural stem cells are also potential therapeutic targets because they produce neurons and glial cells in response to injury and could be affected by the degenerative process. As we discuss here, however, significant hurdles remain before these findings can be responsibly translated to novel therapies. In particular, we need to better understand the mechanisms of action of stem cells after transplantation and learn how to control stem cell proliferation, survival, migration, and differentiation in the pathological environment.
                Bookmark

                Author and article information

                Contributors
                Journal
                Stem Cell Res Ther
                Stem Cell Res Ther
                Stem Cell Research & Therapy
                BioMed Central
                1757-6512
                2013
                7 June 2013
                : 4
                : 3
                : 68
                Affiliations
                [1 ]Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
                [2 ]Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czech Republic
                [3 ]MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
                [4 ]Institute of Psychiatry, King’s College London, London, UK
                Article
                scrt219
                10.1186/scrt219
                3706805
                23759119
                231b837c-eea0-4306-a7b1-1a8af1b2120e
                Copyright © 2013 Amemori et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 December 2012
                : 24 April 2013
                : 4 June 2013
                Categories
                Research

                Molecular medicine
                human fetal neural stem cells,spinal cord injury,motor neuron differentiation,trophic support,neuroregeneration

                Comments

                Comment on this article