2,316
views
0
recommends
+1 Recommend
0 collections
    3
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Codon-substitution models for heterogeneous selection pressure at amino acid sites.

      Genomics
      Amino Acid Substitution, Amino Acids, Animals, Codon, Drosophila, genetics, Gene Products, vif, Genes, pol, Globins, HIV Envelope Protein gp120, Hemagglutinin Glycoproteins, Influenza Virus, Humans, Membrane Glycoproteins, Mitochondria, Models, Genetic, Peptide Fragments, Selection, Genetic, Vertebrates, Viral Envelope Proteins, Viral Nonstructural Proteins

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Comparison of relative fixation rates of synonymous (silent) and nonsynonymous (amino acid-altering) mutations provides a means for understanding the mechanisms of molecular sequence evolution. The nonsynonymous/synonymous rate ratio (omega = d(N)d(S)) is an important indicator of selective pressure at the protein level, with omega = 1 meaning neutral mutations, omega < 1 purifying selection, and omega > 1 diversifying positive selection. Amino acid sites in a protein are expected to be under different selective pressures and have different underlying omega ratios. We develop models that account for heterogeneous omega ratios among amino acid sites and apply them to phylogenetic analyses of protein-coding DNA sequences. These models are useful for testing for adaptive molecular evolution and identifying amino acid sites under diversifying selection. Ten data sets of genes from nuclear, mitochondrial, and viral genomes are analyzed to estimate the distributions of omega among sites. In all data sets analyzed, the selective pressure indicated by the omega ratio is found to be highly heterogeneous among sites. Previously unsuspected Darwinian selection is detected in several genes in which the average omega ratio across sites is <1, but in which some sites are clearly under diversifying selection with omega > 1. Genes undergoing positive selection include the beta-globin gene from vertebrates, mitochondrial protein-coding genes from hominoids, the hemagglutinin (HA) gene from human influenza virus A, and HIV-1 env, vif, and pol genes. Tests for the presence of positively selected sites and their subsequent identification appear quite robust to the specific distributional form assumed for omega and can be achieved using any of several models we implement. However, we encountered difficulties in estimating the precise distribution of omega among sites from real data sets.

          Related collections

          Author and article information

          Comments

          Comment on this article