7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An approach to and web-based tool for infectious disease outbreak intervention analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Infectious diseases are a leading cause of death globally. Decisions surrounding how to control an infectious disease outbreak currently rely on a subjective process involving surveillance and expert opinion. However, there are many situations where neither may be available. Modeling can fill gaps in the decision making process by using available data to provide quantitative estimates of outbreak trajectories. Effective reduction of the spread of infectious diseases can be achieved through collaboration between the modeling community and public health policy community. However, such collaboration is rare, resulting in a lack of models that meet the needs of the public health community. Here we show a Susceptible-Infectious-Recovered (SIR) model modified to include control measures that allows parameter ranges, rather than parameter point estimates, and includes a web user interface for broad adoption. We apply the model to three diseases, measles, norovirus and influenza, to show the feasibility of its use and describe a research agenda to further promote interactions between decision makers and the modeling community.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Network theory and SARS: predicting outbreak diversity

          Many infectious diseases spread through populations via the networks formed by physical contacts among individuals. The patterns of these contacts tend to be highly heterogeneous. Traditional “compartmental” modeling in epidemiology, however, assumes that population groups are fully mixed, that is, every individual has an equal chance of spreading the disease to every other. Applications of compartmental models to Severe Acute Respiratory Syndrome (SARS) resulted in estimates of the fundamental quantity called the basic reproductive number R 0 —the number of new cases of SARS resulting from a single initial case—above one, implying that, without public health intervention, most outbreaks should spark large-scale epidemics. Here we compare these predictions to the early epidemiology of SARS. We apply the methods of contact network epidemiology to illustrate that for a single value of R 0 , any two outbreaks, even in the same setting, may have very different epidemiological outcomes. We offer quantitative insight into the heterogeneity of SARS outbreaks worldwide, and illustrate the utility of this approach for assessing public health strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: a systematic review of the literature

            Background The potential impact of an influenza pandemic can be assessed by calculating a set of transmissibility parameters, the most important being the reproduction number (R), which is defined as the average number of secondary cases generated per typical infectious case. Methods We conducted a systematic review to summarize published estimates of R for pandemic or seasonal influenza and for novel influenza viruses (e.g. H5N1). We retained and summarized papers that estimated R for pandemic or seasonal influenza or for human infections with novel influenza viruses. Results The search yielded 567 papers. Ninety-one papers were retained, and an additional twenty papers were identified from the references of the retained papers. Twenty-four studies reported 51 R values for the 1918 pandemic. The median R value for 1918 was 1.80 (interquartile range [IQR]: 1.47–2.27). Six studies reported seven 1957 pandemic R values. The median R value for 1957 was 1.65 (IQR: 1.53–1.70). Four studies reported seven 1968 pandemic R values. The median R value for 1968 was 1.80 (IQR: 1.56–1.85). Fifty-seven studies reported 78 2009 pandemic R values. The median R value for 2009 was 1.46 (IQR: 1.30–1.70) and was similar across the two waves of illness: 1.46 for the first wave and 1.48 for the second wave. Twenty-four studies reported 47 seasonal epidemic R values. The median R value for seasonal influenza was 1.28 (IQR: 1.19–1.37). Four studies reported six novel influenza R values. Four out of six R values were <1. Conclusions These R values represent the difference between epidemics that are controllable and cause moderate illness and those causing a significant number of illnesses and requiring intensive mitigation strategies to control. Continued monitoring of R during seasonal and novel influenza outbreaks is needed to document its variation before the next pandemic. Electronic supplementary material The online version of this article (doi:10.1186/1471-2334-14-480) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Modeling human decisions in coupled human and natural systems: Review of agent-based models

              Li-Kun An (2012)
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                18 April 2017
                2017
                : 7
                : 46076
                Affiliations
                [1 ]Los Alamos National Laboratory , Los Alamos, 87544, USA
                Author notes
                Article
                srep46076
                10.1038/srep46076
                5394686
                28417983
                243ef281-e22a-4031-a8af-432c43ec6f42
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 03 October 2016
                : 28 February 2017
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article