10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Distinct transport mechanisms in yeast ammonium transport/sensor proteins of the Mep/Amt/Rh family and impact on filamentation.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ammonium transport proteins of the Mep/Amt/Rh family include microbial and plant Mep/Amt members, crucial for ammonium scavenging, and animal Rhesus factors likely involved in ammonium disposal. Recent structural information on two bacterial Mep/Amt proteins has revealed the presence, in the hydrophobic conducting pore, of a pair of preserved histidines proposed to play an important role in substrate conductance, by participating either in NH(4)(+) deprotonation or in shaping the pore. Here we highlight the existence of two functional Mep/Amt subfamilies distinguishable according to whether the first of these histidines is conserved, as in yeast ScMep2, or replaced by glutamate, as in ScMep1. Replacement of the native histidine of ScMep2 with glutamate leads to conversion from ScMep2 to ScMep1-like properties. This includes a two-unit upshift of the optimal pH for transport and an increase of the transport rate, consistent with alleviation of an energy-limiting step. Similar effects are observed when the same substitution is introduced into the Escherichia coli AmtB protein. In contrast to ScMep1, ScMep2 is proposed to play an additional signaling role in the induction of filamentous growth, a dimorphic change often associated with virulence in pathogenic fungi. We show here that the histidine to glutamate substitution in ScMep2 leads to uncoupling of the transport and sensor functions, suggesting that a ScMep2-specific transport mechanism might be responsible for filamentation. Our overall data suggest the existence of two functional groups of Mep/Amt-type proteins with different transport mechanisms and distinct impacts on cell physiology and signaling.

          Related collections

          Author and article information

          Journal
          J Biol Chem
          The Journal of biological chemistry
          American Society for Biochemistry & Molecular Biology (ASBMB)
          0021-9258
          0021-9258
          Aug 01 2008
          : 283
          : 31
          Affiliations
          [1 ] Laboratoire de Physiologie Moléculaire de la Cellule, IBMM, the Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, Gosselies, Belgium.
          Article
          S0021-9258(19)54628-2
          10.1074/jbc.M801467200
          18508774
          2447cccf-d88b-4d1c-b7f2-73f511fe44e9
          History

          Comments

          Comment on this article