Blog
About

8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A complex network-based approach for boundary shape analysis

      , ,

      Pattern Recognition

      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 18

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Statistical mechanics of complex networks

          Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as random graphs, it is increasingly recognized that the topology and evolution of real networks is governed by robust organizing principles. Here we review the recent advances in the field of complex networks, focusing on the statistical mechanics of network topology and dynamics. After reviewing the empirical data that motivated the recent interest in networks, we discuss the main models and analytical tools, covering random graphs, small-world and scale-free networks, as well as the interplay between topology and the network's robustness against failures and attacks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Specificity and stability in topology of protein networks

            Molecular networks guide the biochemistry of a living cell on multiple levels: its metabolic and signalling pathways are shaped by the network of interacting proteins, whose production, in turn, is controlled by the genetic regulatory network. To address topological properties of these two networks we quantify correlations between connectivities of interacting nodes and compare them to a null model of a network, in which al links were randomly rewired. We find that for both interaction and regulatory networks, links between highly connected proteins are systematically suppressed, while those between a highly-connected and low-connected pairs of proteins are favored. This effect decreases the likelihood of cross talk between different functional modules of the cell, and increases the overall robustness of a network by localizing effects of deleterious perturbations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Characterization of complex networks: A survey of measurements

              Each complex network (or class of networks) presents specific topological features which characterize its connectivity and highly influence the dynamics of processes executed on the network. The analysis, discrimination, and synthesis of complex networks therefore rely on the use of measurements capable of expressing the most relevant topological features. This article presents a survey of such measurements. It includes general considerations about complex network characterization, a brief review of the principal models, and the presentation of the main existing measurements. Important related issues covered in this work comprise the representation of the evolution of complex networks in terms of trajectories in several measurement spaces, the analysis of the correlations between some of the most traditional measurements, perturbation analysis, as well as the use of multivariate statistics for feature selection and network classification. Depending on the network and the analysis task one has in mind, a specific set of features may be chosen. It is hoped that the present survey will help the proper application and interpretation of measurements.
                Bookmark

                Author and article information

                Journal
                Pattern Recognition
                Pattern Recognition
                Elsevier BV
                00313203
                January 2009
                January 2009
                : 42
                : 1
                : 54-67
                Article
                10.1016/j.patcog.2008.07.006
                © 2009

                Comments

                Comment on this article