Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Identification of Maturation-Specific Proteins by Single-Cell Proteomics of Human Oocytes.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oocytes undergo a range of complex processes via oogenesis, maturation, fertilization, and early embryonic development, eventually giving rise to a fully functioning organism. To understand proteome composition and diversity during maturation of human oocytes, here we have addressed crucial aspects of oocyte collection and proteome analysis, resulting in the first proteome and secretome maps of human oocytes. Starting from 100 oocytes collected via a novel serum-free hanging drop culture system, we identified 2,154 proteins, whose function indicate that oocytes are largely resting cells with a proteome that is tailored for homeostasis, cellular attachment, and interaction with its environment via secretory factors. In addition, we have identified 158 oocyte-enriched proteins (such as ECAT1, PIWIL3, NLRP7)(1) not observed in high-coverage proteomics studies of other human cell lines or tissues. Exploiting SP3, a novel technology for proteomic sample preparation using magnetic beads, we scaled down proteome analysis to single cells. Despite the low protein content of only ∼100 ng per cell, we consistently identified ∼450 proteins from individual oocytes. When comparing individual oocytes at the germinal vesicle (GV) and metaphase II (MII) stage, we found that the Tudor and KH domain-containing protein (TDRKH) is preferentially expressed in immature oocytes, while Wee2, PCNA, and DNMT1 were enriched in mature cells, collectively indicating that maintenance of genome integrity is crucial during oocyte maturation. This study demonstrates that an innovative proteomics workflow facilitates analysis of single human oocytes to investigate human oocyte biology and preimplantation development. The approach presented here paves the way for quantitative proteomics in other quantity-limited tissues and cell types. Data associated with this study are available via ProteomeXchange with identifier PXD004142.

          Related collections

          Author and article information

          Journal
          Mol. Cell Proteomics
          Molecular & cellular proteomics : MCP
          American Society for Biochemistry & Molecular Biology (ASBMB)
          1535-9484
          1535-9476
          August 2016
          : 15
          : 8
          Affiliations
          [1 ] From the ‡Reproductive Unit, Department of Obstetrics and Gynecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000 Ljubljana, Slovenia;
          [2 ] §European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany;
          [3 ] ¶British Columbia Cancer Research Agency, 675 West 10th Avenue, Vancouver, Canada;
          [4 ] §European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany; ‖German Cancer Research Center and Heidelberg University, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany irma.virant@kclj.si j.krijgsveld@dkfz.de.
          Article
          M115.056887
          10.1074/mcp.M115.056887
          4974340
          27215607
          24af539c-16a7-4182-b35b-ee61a780cf4d
          History

          Comments

          Comment on this article