Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      AdipoRon, a new therapeutic prospect for Duchenne muscular dystrophy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Adiponectin (ApN) is a hormone known to exhibit insulin‐sensitizing, fat‐burning, and anti‐inflammatory properties in several tissues, including the skeletal muscle. Duchenne muscular dystrophy (DMD) is a devastating disease characterized by dystrophin deficiency with subsequent chronic inflammation, myofiber necrosis, and impaired regeneration. Previously, we showed that transgenic up‐regulation of ApN could significantly attenuate the dystrophic phenotype in mdx mice (model of DMD). Recently, an orally active ApN receptor agonist, AdipoRon, has been identified. This synthetic small molecule has the advantage of being more easily produced and administrable than ApN. The aim of this study was to investigate the potential effects of AdipoRon on the dystrophic muscle.

          Methods

          Four‐week‐old mdx mice ( n = 6–9 per group) were orally treated with AdipoRon (mdx‐AR) for 8 weeks and compared with untreated (mdx) mice and to control (wild‐type) mice. In vivo functional tests were carried out to measure the global force and endurance of mice. Ex vivo biochemical and molecular analyses were performed to evaluate the pathophysiology of the skeletal muscle. Finally, in vitro tests were conducted on primary cultures of healthy and DMD human myotubes.

          Results

          AdipoRon treatment mitigated oxidative stress (−30% to 45% for 4‐hydroxy‐2‐nonenal and peroxiredoxin 3, P < 0.0001) as well as inflammation in muscles of mdx mice (−35% to 65% for interleukin 1 beta, tumour necrosis factor alpha, and cluster of differentiation 68, a macrophage maker, P < 0.0001) while increasing the anti‐inflammatory cytokine, interleukin 10 (~5‐fold, P < 0.0001). AdipoRon also improved the myogenic programme as assessed by a ~2‐fold rise in markers of muscle proliferation and differentiation ( P < 0.01 or less vs. untreated mdx). Plasma lactate dehydrogenase and creatine kinase were reduced by 30–40% in mdx‐AR mice, reflecting less sarcolemmal damage ( P < 0.0001). When compared with untreated mdx mice, mdx‐AR mice exhibited enhanced physical performance with an increase in both muscle force and endurance and a striking restoration of the running capacity during eccentric exercise. AdipoRon mainly acted through ApN receptor 1 by increasing AMP‐activated protein kinase signalling, which led to repression of nuclear factor‐kappa B, up‐regulation of utrophin (a dystrophin analogue), and a switch towards an oxidative and more resistant fibre phenotype. The effects of AdipoRon were then recapitulated in human DMD myotubes.

          Conclusions

          These results demonstrate that AdipoRon exerts several beneficial effects on the dystrophic muscle. This molecule could offer promising therapeutic prospect for managing DMD or other muscle and inflammatory disorders.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions.

          Adiponectin plays a central role as an antidiabetic and antiatherogenic adipokine. AdipoR1 and AdipoR2 serve as receptors for adiponectin in vitro, and their reduction in obesity seems to be correlated with reduced adiponectin sensitivity. Here we show that adenovirus-mediated expression of AdipoR1 and R2 in the liver of Lepr(-/-) mice increased AMP-activated protein kinase (AMPK) activation and peroxisome proliferator-activated receptor (PPAR)-alpha signaling pathways, respectively. Activation of AMPK reduced gluconeogenesis, whereas expression of the receptors in both cases increased fatty acid oxidation and lead to an amelioration of diabetes. Alternatively, targeted disruption of AdipoR1 resulted in the abrogation of adiponectin-induced AMPK activation, whereas that of AdipoR2 resulted in decreased activity of PPAR-alpha signaling pathways. Simultaneous disruption of both AdipoR1 and R2 abolished adiponectin binding and actions, resulting in increased tissue triglyceride content, inflammation and oxidative stress, and thus leading to insulin resistance and marked glucose intolerance. Therefore, AdipoR1 and R2 serve as the predominant receptors for adiponectin in vivo and play important roles in the regulation of glucose and lipid metabolism, inflammation and oxidative stress in vivo.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulatory interactions between muscle and the immune system during muscle regeneration.

            Recent discoveries reveal complex interactions between skeletal muscle and the immune system that regulate muscle regeneration. In this review, we evaluate evidence that indicates that the response of myeloid cells to muscle injury promotes muscle regeneration and growth. Acute perturbations of muscle activate a sequence of interactions between muscle and inflammatory cells. The initial inflammatory response is a characteristic Th1 inflammatory response, first dominated by neutrophils and subsequently by CD68(+) M1 macrophages. M1 macrophages can propagate the Th1 response by releasing proinflammatory cytokines and cause further tissue damage through the release of nitric oxide. Myeloid cells in the early Th1 response stimulate the proliferative phase of myogenesis through mechanisms mediated by TNF-alpha and IL-6; experimental prolongation of their presence is associated with delayed transition to the early differentiation stage of myogenesis. Subsequent invasion by CD163(+)/CD206(+) M2 macrophages attenuates M1 populations through the release of anti-inflammatory cytokines, including IL-10. M2 macrophages play a major role in promoting growth and regeneration; their absence greatly slows muscle growth following injury or modified use and inhibits muscle differentiation and regeneration. Chronic muscle injury leads to profiles of macrophage invasion and function that differ from acute injuries. For example, mdx muscular dystrophy yields invasion of muscle by M1 macrophages, but their early invasion is accompanied by a subpopulation of M2a macrophages. M2a macrophages are IL-4 receptor(+)/CD206(+) cells that reduce cytotoxicity of M1 macrophages. Subsequent invasion of dystrophic muscle by M2c macrophages is associated with progression of the regenerative phase in pathophysiology. Together, these findings show that transitions in macrophage phenotype are an essential component of muscle regeneration in vivo following acute or chronic muscle damage.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Ethical guidelines for publishing in the Journal of Cachexia, Sarcopenia and Muscle : update 2019

              Abstract This article details an updated version of the principles of ethical authorship and publishing in the Journal of Cachexia, Sarcopenia and Muscle (JCSM) and its two daughter journals JCSM Rapid Communication and JCSM Clinical Reports. We request of all author sending to the journal a paper for consideration that at the time of submission to JCSM, the corresponding author, on behalf of all co‐authors, needs to certify adherence to these principles. The principles are as follows: all authors listed on a manuscript considered for publication have approved its submission and (if accepted) approve publication in JCSM as provided; each named author has made a material and independent contribution to the work submitted for publication; no person who has a right to be recognized as author has been omitted from the list of authors on the submitted manuscript; the submitted work is original and is neither under consideration elsewhere nor that it has been published previously in whole or in part other than in abstract form; all authors certify that the submitted work is original and does not contain excessive overlap with prior or contemporaneous publication elsewhere, and where the publication reports on cohorts, trials, or data that have been reported on before the facts need to be acknowledged and these other publications must be referenced; all original research work has been approved by the relevant bodies such as institutional review boards or ethics committees; all relevant conflicts of interest, financial or otherwise, that may affect the authors' ability to present data objectively, and relevant sources of funding of the research in question have been duly declared in the manuscript; the manuscript in its published form will be maintained on the servers of JCSM as a valid publication only as long as all statements in the guidelines on ethical publishing remain true. If any of the aforementioned statements ceases to be true, the authors have a duty to notify as soon as possible the Editors of JCSM, JCSM Rapid Communication, and JCSM Clinical Reports, respectively, so that the available information regarding the published article can be updated and/or the manuscript can be withdrawn.
                Bookmark

                Author and article information

                Contributors
                michel.abousamra@uclouvain.be
                Journal
                J Cachexia Sarcopenia Muscle
                J Cachexia Sarcopenia Muscle
                10.1007/13539.2190-6009
                JCSM
                Journal of Cachexia, Sarcopenia and Muscle
                John Wiley and Sons Inc. (Hoboken )
                2190-5991
                2190-6009
                21 January 2020
                April 2020
                : 11
                : 2 ( doiID: 10.1002/jcsm.v11.2 )
                : 518-533
                Affiliations
                [ 1 ] Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector Université Catholique de Louvain Brussels Belgium
                Author notes
                [*] [* ] Correspondence to: Michel Abou‐Samra, IREC – Endocrinology, Diabetes and Nutrition Unit, UCL/EDIN B1.55.06 – Av. Hippocrate 55, Harvey, B‐1200 Brussels, Belgium, Email: michel.abousamra@ 123456uclouvain.be
                [†]

                These authors contributed equally to the study.

                Author information
                https://orcid.org/0000-0003-2312-7998
                Article
                JCSM12531 JCSM-D-19-00045
                10.1002/jcsm.12531
                7113498
                31965757
                24cc7056-7036-4bc6-bb8f-245b810850a7
                © 2020 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of Society on Sarcopenia, Cachexia and Wasting Disorders

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 04 February 2019
                : 23 October 2019
                : 14 November 2019
                Page count
                Figures: 8, Tables: 0, Pages: 16, Words: 7903
                Funding
                Funded by: King Baudouin Foundation , open-funder-registry 10.13039/501100006282;
                Funded by: Foundation of Scientific and Medical Research
                Award ID: T.0212.13
                Funded by: Belgian Telethon
                Funded by: The French Association against Myopathies
                Award ID: H121203009
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                April 2020
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.7.8 mode:remove_FC converted:02.04.2020

                Orthopedics
                duchenne muscular dystrophy,adiporon,ampk,utrophin,skeletal muscle,inflammation
                Orthopedics
                duchenne muscular dystrophy, adiporon, ampk, utrophin, skeletal muscle, inflammation

                Comments

                Comment on this article