14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Analysis of the Bovine DLK1 Gene Polymorphism and Its Relation to Lipid Metabolism in Chinese Simmental

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Delta-like non-canonical Notch ligand 1 (DLK1) is a candidate gene associated with lipid metabolism. In order to verify the function of the DLK1 gene on lipid metabolism in Chinese Simmental cattle, we identified the effect of DLK1 on lipid metabolism in bovine fetal fibroblast cells (BFFs). At the same time, we also detected the relationship between single-nucleotide polymorphism sites (SNPs) of bovine DLK1 with the economic traits and fatty acids composition in Chinese Simmental cattle, such as the carcass fat coverage rate, loin eye muscle area, and fat color score, etc. In the present study, we precisely constructed and transfected the overexpression and interference vectors of the DLK1 gene in BFFs. the results showed that the overexpression of the DLK1 gene could decrease the contents of intracellular triglycerides (TGs) while interference of the DLK1 gene could increase the TGs contents. Gas chromatography analysis of the fatty acid composition showed that the contents of octanoate acid and γ-linolenate acid were regulated as the expression of DLK1 was altered. We found two SNPs and genes associated with these traits in Chinese Simmental by the restriction fragment length polymorphism (RPLF-PCR) detection method. In summary, we verified the effects of bovine DLK1 on fatty acid metabolism from the cellular level to population genetic polymorphism, which also paved the way for further studying of the effects of the DLK1 gene on lipid metabolism in vivo.

          Abstract

          In this study, we precisely constructed and transfected the overexpression and interference vectors in BFFs to evaluate the role of DLK1 gene on lipid metabolism in vitro. The expression of of DLK1 in the mRNA and protein level tended to reduce, and TGs were significantly increased in the pGPU6-shDLK1 group compared to the control group ( p < 0.05). The expression of DLK1 in the mRNA and protein level were increased in the pBI-CMV3-DLK1 group compared to the control group, and the TGs content showed a significant decrease in the pBI-CMV3-DLK1 group ( p < 0.05). Meanwhile, we used the restriction fragment length polymorphism (RFLP-PCR) detection method to screen SNPs further to explore and analyze the relationship between the gene and the economic traits of 28-month-old Chinese Simmental and the fatty acids composition of cattle longissimus muscle. The result showed that two SNPs, IVS3 + 478 C > T and IVS3 + 609 T > G, were identified as being significantly associated with carcass and meat quality traits in Chinese Simmental, such as the carcass fat coverage rate, loin eye muscle area, and fat color score. In summary, our results indicated that DLK1 can affect lipid metabolism in bovine and these two SNPs might be applied as genetic markers of meat quality traits for beef cattle breeding.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of nutritional and hormonal regulation of lipogenesis.

          Fat build-up is determined by the balance between lipogenesis and lipolysis/fatty acid oxidation. In the past few years, our understanding of the nutritional, hormonal and particularly transcriptional regulation of lipogenesis has expanded greatly. Lipogenesis is stimulated by a high carbohydrate diet, whereas it is inhibited by polyunsaturated fatty acids and by fasting. These effects are partly mediated by hormones, which inhibit (growth hormone, leptin) or stimulate (insulin) lipogenesis. Recent research has established that sterol regulatory element binding protein-1 is a critical intermediate in the pro- or anti-lipogenic action of several hormones and nutrients. Another transcription factor implicated in lipogenesis is the peroxisome proliferator activated receptor gamma. Both transcription factors are attractive targets for pharmaceutical intervention of disorders such as hypertriglyceridemia and obesity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mice lacking paternally expressed Pref-1/Dlk1 display growth retardation and accelerated adiposity.

            Preadipocyte factor 1 (Pref-1/Dlk1) inhibits in vitro adipocyte differentiation and has been recently reported to be a paternally expressed imprinted gene at human chromosome 14q32. Studies on human chromosome 14 deletions and maternal uniparental disomy (mUPD) 14 suggest that misexpression of a yet-to-be-identified imprinted gene or genes present on chromosome 14 causes congenital disorders. We generated Pref-1 knockout mice to assess the role of Pref-1 in growth and in vivo adipogenesis and to determine the contribution of Pref-1 in mUPD. Pref-1-null mice display growth retardation, obesity, blepharophimosis, skeletal malformation, and increased serum lipid metabolites. Furthermore, the phenotypes observed in Pref-1-null mice are present in heterozygotes that harbor a paternally inherited, but not in those with a maternally inherited pref-1-null allele. Our results demonstrate that Pref-1 is indeed paternally expressed and is important for normal development and for homeostasis of adipose tissue mass. We also suggest that Pref-1 is responsible for most of the symptoms observed in mouse mUPD12 and human mUPD14. Pref-1-null mice may be a model for obesity and other pathologies of human mUPD14.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis.

              Although it has been known for over 50 years that lipoprotein lipase (LPL) hydrolyzes triglyceride in chylomicrons, during the past half decade there has been a reinterest in the physiologic and pathophysiologic actions of this enzyme. In part, this has coincided with clinical studies implicating increased postprandial lipemia as a risk factor for atherosclerosis development. In addition, the recent creation of genetically altered mice with hypertriglyceridemia has focused the interest of geneticists and physiologists on the pathophysiology of triglyceride metabolism. As reviewed in this article, it is apparent that the lipolysis reaction is only partially understood. Several factors other than LPL are critical modulators of this process, in part, because the reaction requires the lipoproteins to interact with the arterial or capillary wall. Among the factors that affect this are the apolipoprotein composition of the particles, the size of the lipoproteins, and how LPL is displayed along the endothelial luminal surface. Zilversmit's observation that LPL activity is found in greater amounts in atherosclerotic than normal arteries has led to a large number of experiments linking LPL with atherogenesis. In medium and large arteries LPL is found on the luminal endothelial surface and in macrophage-rich areas within the plaque. LPL actions in both of these locations probably have major effects on the biology of the blood vessel. Possible atherogenic actions for this LPL based on in vitro experiments are reviewed.
                Bookmark

                Author and article information

                Journal
                Animals (Basel)
                Animals (Basel)
                animals
                Animals : an Open Access Journal from MDPI
                MDPI
                2076-2615
                26 May 2020
                June 2020
                : 10
                : 6
                : 923
                Affiliations
                [1 ]College of Agriculture, Guangdong Ocean University, Zhanjiang 524088, China; wangmengyan17@ 123456163.com (W.M.); 15584169529@ 123456163.com (P.J.)
                [2 ]College of Animal Science, Jilin University, Changchun 130062, China; fisheryx@ 123456163.com (X.Y.); jlumijiaqi@ 123456163.com (J.M.); baizitong96@ 123456163.com (Z.B.); zxq4015@ 123456126.com (X.Z.); liuyn88@ 123456hotmail.com (Y.L.); fangxibi@ 123456jlu.edu.cn (X.F.)
                Author notes
                [* ]Correspondence: yrj@ 123456jlu.edu.cn (R.Y.); zhzhao@ 123456jlu.edu.cn (Z.Z.)
                [†]

                The two authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0002-1157-0047
                https://orcid.org/0000-0001-7341-9070
                https://orcid.org/0000-0003-1134-0003
                https://orcid.org/0000-0003-1401-4318
                Article
                animals-10-00923
                10.3390/ani10060923
                7341504
                32466491
                24f21669-93eb-49aa-a348-75cfece8f6ce
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 11 May 2020
                : 22 May 2020
                Categories
                Article

                dlk1,mrna,triglyceride,beef cattle,genetic polymorphism
                dlk1, mrna, triglyceride, beef cattle, genetic polymorphism

                Comments

                Comment on this article