46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pure curcumin decreases the expression of WT1 by upregulation of miR-15a and miR-16-1 in leukemic cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Pure curcumin has been reported to down-regulate the expression of WT1 in leukemic cells. However, the molecular mechanism underlying the down-regulation of WT1 by curcumin is not completely delineated. The purpose of this present study is to identify a new miRNA-mediated mechanism which plays an important role in the anti-proliferation effects of curcumin in leukemic cells.

          Methods

          K562 and HL-60 cells were treated with different concentrations of curcumin for 24 and 48 hours, the level of miR-15a/16-1 and WT1 were detected by qRT-PCR and Western blotting. WT1 expression and cell proliferation were detected by Western blotting and CCK-8, after curcumin treated-K562 and HL-60 cells were transfected with anti-miR-15a/16-1 oligonucleotides.

          Results

          We found that pure curcumin upregulated the expression of miR-15a/16-1 and downregulated the expression of WT1 in leukemic cells and primary acute myeloid leukemia (AML) cells. Overexpression of miR-15a/16-1 deduced the protein level of WT1 in leukemic cells, but downregulation of WT1 by siRNA-WT1 could not increase the expression of miR-15a/16-1 in leukemic cells. These results reveal that curcumin induced-upregulation of miR-15a/16-1 is an early event upstream to downregulation of WT1. Furthermore, anti-miR-15a/16-1 oligonucleotides (AMO) partly reversed the downregulation of WT1 induced by pure curcumin in leukemic cells and AMO promoted the growth of curcumin treated-K562 and HL-60 cells.

          Conclusion

          Thus, these data suggest for the first time that pure curcumin downregulated the expression of WT1 partly by upregulating the expression of miR-15a/16-1 in leukemic cells. miR-15a/16-1 mediated WT1 downregulation plays an important role in the anti-proliferation effect of curcumin in leukemic cells.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs.

          MicroRNAs (miRNAs) are a class of noncoding RNAs that post-transcriptionally regulate gene expression in plants and animals. To investigate the influence of miRNAs on transcript levels, we transfected miRNAs into human cells and used microarrays to examine changes in the messenger RNA profile. Here we show that delivering miR-124 causes the expression profile to shift towards that of brain, the organ in which miR-124 is preferentially expressed, whereas delivering miR-1 shifts the profile towards that of muscle, where miR-1 is preferentially expressed. In each case, about 100 messages were downregulated after 12 h. The 3' untranslated regions of these messages had a significant propensity to pair to the 5' region of the miRNA, as expected if many of these messages are the direct targets of the miRNAs. Our results suggest that metazoan miRNAs can reduce the levels of many of their target transcripts, not just the amount of protein deriving from these transcripts. Moreover, miR-1 and miR-124, and presumably other tissue-specific miRNAs, seem to downregulate a far greater number of targets than previously appreciated, thereby helping to define tissue-specific gene expression in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            WT-1 is required for early kidney development.

            In humans, germline mutations of the WT-1 tumor suppressor gene are associated with both Wilms' tumors and urogenital malformations. To develop a model system for the molecular analysis of urogenital development, we introduced a mutation into the murine WT-1 tumor suppressor gene by gene targeting in embryonic stem cells. The mutation resulted in embryonic lethality in homozygotes, and examination of mutant embryos revealed a failure of kidney and gonad development. Specifically, at day 11 of gestation, the cells of the metanephric blastema underwent apoptosis, the ureteric bud failed to grow out from the Wolffian duct, and the inductive events that lead to formation of the metanephric kidney did not occur. In addition, the mutation caused abnormal development of the mesothelium, heart, and lungs. Our results establish a crucial role for WT-1 in early urogenital development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells.

              Pancreatic cancer is the fourth most common cause of cancer death in the United States, and the aggressiveness of pancreatic cancer is in part due to its intrinsic and extrinsic drug resistance characteristics, which are also associated with the acquisition of epithelial-to-mesenchymal transition (EMT). Emerging evidence also suggests that the processes of EMT are regulated by the expression status of many microRNAs (miRNA), which are believed to function as key regulators of various biological and pathologic processes during tumor development and progression. In the present study, we compared the expression of miRNAs between gemcitabine-sensitive and gemcitabine-resistant pancreatic cancer cells and investigated whether the treatment of cells with "natural agents" [3,3'-diindolylmethane (DIM) or isoflavone] could affect the expression of miRNAs. We found that the expression of miR-200b, miR-200c, let-7b, let-7c, let-7d, and let-7e was significantly down-regulated in gemcitabine-resistant cells, which showed EMT characteristics such as elongated fibroblastoid morphology, lower expression of epithelial marker E-cadherin, and higher expression of mesenchymal markers such as vimentin and ZEB1. Moreover, we found that reexpression of miR-200 by transfection studies or treatment of gemcitabine-resistant cells with either DIM or isoflavone resulted in the down-regulation of ZEB1, slug, and vimentin, which was consistent with morphologic reversal of EMT phenotype leading to epithelial morphology. These results provide experimental evidence, for the first time, that DIM and isoflavone could function as miRNA regulators leading to the reversal of EMT phenotype, which is likely to be important for designing novel therapies for pancreatic cancer.
                Bookmark

                Author and article information

                Journal
                J Exp Clin Cancer Res
                J. Exp. Clin. Cancer Res
                Journal of Experimental & Clinical Cancer Research : CR
                BioMed Central
                0392-9078
                1756-9966
                2012
                27 March 2012
                : 31
                : 1
                : 27
                Affiliations
                [1 ]Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical College, 2 FuXue Road, Wenzhou 325000, China
                [2 ]Clinical Laboratory, The Second Affiliated Hospital of Wenzhou Medical College, 109 Xuanyuanxi Road, Wenzhou 325000, China
                [3 ]Department of Hematology, The First Affiliated Hospital of Wenzhou Medical College, 2 FuXue Road, Wenzhou 325000, China
                Article
                1756-9966-31-27
                10.1186/1756-9966-31-27
                3325897
                22449094
                2579d5ff-357c-4645-87c0-62cafb5a764a
                Copyright ©2012 Gao et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 January 2012
                : 27 March 2012
                Categories
                Research

                Oncology & Radiotherapy
                mir-15a,curcumin,wt1,mir-16-1
                Oncology & Radiotherapy
                mir-15a, curcumin, wt1, mir-16-1

                Comments

                Comment on this article