10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Docosahexaenoic acid: a natural powerful adjuvant that improves efficacy for anticancer treatment with no adverse effects.

      Biofactors (Oxford, England)
      Adjuvants, Pharmaceutic, adverse effects, pharmacology, therapeutic use, Animals, Antineoplastic Agents, Cell Line, Tumor, Cell Survival, Docosahexaenoic Acids, Drug Synergism, Humans, Neoplasms, drug therapy, Xenograft Model Antitumor Assays

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Epidemiological studies have linked fish oil consumption to a decreased incidence of cancer. The anticancer effects of fish oil are mostly attributed to its content of omega-3 fatty acids: eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). However, DHA, because of its unique effect of altering membrane composition, is often regarded as the major omega-3 fatty acid involved in anticancer activity. Although use of DHA as an anticancer drug to prevent or treat human cancer in clinical settings has not yet been well established, recent studies suggest that DHA can be very effective as an adjuvant with other anticancer agents. In this article, we present studies that show the role of DHA in improving anticancer drug efficacy. Several in vitro and animal studies suggest that combining DHA with other anticancer agents often improves efficacy of anticancer drugs and also reduces therapy-associated side effects. Incorporation of DHA in cellular membranes improves drug uptake, whereas increased lipid peroxidation is another mechanism for DHA-mediated enhanced efficacy of anticancer drugs. In addition, several intracellular targets including cyclooxygenase-2, nuclear factor kappa B, peroxisome proliferator-activated receptor gamma, mitogen-activated protein kinase, AKT, and BCL-2/BAX are found to play an important role in DHA-mediated additive or synergistic interaction with anticancer drugs. The data suggest that DHA is a safe, natural compound that can greatly improve the anticancer properties of anticancer drugs. Use of DHA with anticancer treatments provides an avenue to therapeutic improvement that involves less risk or side effects for patients and reduced regulatory burden for implementation. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.

          Related collections

          Author and article information

          Comments

          Comment on this article