2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structural and Transport Properties of E-Beam Sintered Lanthanide Tungstates and Tungstates-Molybdates

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lanthanide tungstates and molybdates are promising materials for hydrogen separation membranes due to their high protonic conductivity. A promising approach to fabricating ceramics based on these materials is radiation thermal sintering. The current work aims at studying the effect of radiation thermal sintering on the structural morphological and transport properties of (Nd,Ln)5.5(W,Mo)O11.25–δ as promising materials for hydrogen separation membranes. The defect fluorite structure was shown to be preserved during radiation thermal sintering at 1100 °C. The presence of protons in hydrated samples was confirmed by TGA. According to four-electrode studies and the isotope exchange of oxygen with C18O2, the samples demonstrate a high proton conductivity and oxygen mobility. Residual porosity (up to 29%) observed for these samples can be dealt with during membrane preparation by adding sintering aids and/or metal alloys nanoparticles. Hence, sintering by e-beams can be applied to the manufacturing of hydrogen separation membranes based on these materials.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: not found
          • Article: not found

          Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Triple ionic-electronic conducting oxides for next-generation electrochemical devices.

            Triple ionic-electronic conductors (TIECs) are materials that can simultaneously transport electronic species alongside two ionic species. The recent emergence of TIECs provides intriguing opportunities to maximize performance in a variety of electrochemical devices, including fuel cells, membrane reactors and electrolysis cells. However, the potential application of these nascent materials is limited by lack of fundamental knowledge of their transport properties and electrocatalytic activity. The goal of this Review is to summarize and analyse the current understanding of TIEC transport and electrochemistry in single-phase materials, including defect formation and conduction mechanisms. We particularly focus on the discovery criteria (for example, crystal structure and ion electronegativity), design principles (for example, cation and anion substitution chemistry) and operating conditions (for example, atmosphere) of materials that enable deliberate tuning of the conductivity of each charge carrier. Lastly, we identify important areas for further advances, including higher chemical stability, lower operating temperatures and discovery of n-type TIEC materials.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Mo-Substituted Lanthanum Tungstate La28–yW4+yO54+δ: A Competitive Mixed Electron–Proton Conductor for Gas Separation Membrane Applications

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                NANOKO
                Nanomaterials
                Nanomaterials
                MDPI AG
                2079-4991
                October 2022
                September 21 2022
                : 12
                : 19
                : 3282
                Article
                10.3390/nano12193282
                25ebebb0-6774-409e-9a43-cad73ea4c9a1
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article