16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structural Insights in Multifunctional Papillomavirus Oncoproteins

      review-article
      , *
      Viruses
      MDPI
      papillomaviruses, oncoproteins, structure, X-ray, NMR, virus-host interactomics

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since their discovery in the mid-eighties, the main papillomavirus oncoproteins E6 and E7 have been recalcitrant to high-resolution structure analysis. However, in the last decade a wealth of three-dimensional information has been gained on both proteins whether free or complexed to host target proteins. Here, we first summarize the diverse activities of these small multifunctional oncoproteins. Next, we review the available structural data and the new insights they provide about the evolution of E6 and E7, their multiple interactions and their functional variability across human papillomavirus (HPV) species.

          Related collections

          Most cited references133

          • Record: found
          • Abstract: found
          • Article: not found

          A signature motif in transcriptional co-activators mediates binding to nuclear receptors.

          The binding of lipophilic hormones, retinoids and vitamins to members of the nuclear-receptor superfamily modifies the DNA-binding and transcriptional properties of these receptors, resulting in the activation or repression of target genes. Ligand binding induces conformational changes in nuclear receptors and promotes their association with a diverse group of nuclear proteins, including SRC-1/p160, TIF-2/GRIP-1 and CBP/p300 which function as co-activators of transcription, and RIP-140, TIF-1 and TRIP-1/SUG-1 whose functions are unclear. Here we report that a short sequence motif LXXLL (where L is leucine and X is any amino acid) present in RIP-140, SRC-1 and CBP is necessary and sufficient to mediate the binding of these proteins to liganded nuclear receptors. We show that the ability of SRC-1 to bind the oestrogen receptor and enhance its transcriptional activity is dependent upon the integrity of the LXXLL motifs and on key hydrophobic residues in a conserved helix (helix 12) of the oestrogen receptor that are required for its ligand-induced activation function. We propose that the LXXLL motif is a signature sequence that facilitates the interaction of different proteins with nuclear receptors, and is thus a defining feature of a new family of nuclear proteins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade.

            Ubiquitination of proteins involves the concerted action of the E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzymes and E3 ubiquitin-protein ligases. It has been proposed that E3s function as 'docking proteins', specifically binding substrate proteins and specific E2s, and that ubiquitin is then transferred directly from E2s to substrates. We show here that formation of a ubiquitin thioester on E6-AP, an E3 involved in the human papillomavirus E6-induced ubiquitination of p53 (refs 6-10), is an intermediate step in E6-AP-dependent ubiquitination. The order of ubiquitin transfer is from E1 to E2, from E2 to E6-AP, and finally from E6-AP to a substrate. This cascade of ubiquitin thioester complexes suggests that E3s have a defined enzymatic activity and do not function simply as docking proteins. The cysteine residue of E6-AP responsible for ubiquitin thioester formation was mapped to a region that is highly conserved among several proteins of unknown function, suggesting that these proteins share the ability to form thioesters with ubiquitin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structural biology of the tumor suppressor p53.

              The tumor suppressor protein p53 induces or represses the expression of a variety of target genes involved in cell cycle control, senescence, and apoptosis in response to oncogenic or other cellular stress signals. It exerts its function as guardian of the genome through an intricate interplay of independently folded and intrinsically disordered functional domains. In this review, we provide insights into the structural complexity of p53, the molecular mechanisms of its inactivation in cancer, and therapeutic strategies for the pharmacological rescue of p53 function in tumors. p53 emerges as a paradigm for a more general understanding of the structural organization of modular proteins and the effects of disease-causing mutations.
                Bookmark

                Author and article information

                Journal
                Viruses
                Viruses
                viruses
                Viruses
                MDPI
                1999-4915
                15 January 2018
                January 2018
                : 10
                : 1
                : 37
                Affiliations
                Équipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France; suarezi@ 123456igbmc.fr
                Author notes
                Article
                viruses-10-00037
                10.3390/v10010037
                5795450
                29342959
                2689f849-e6d2-4d45-b397-114a92c758b5
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 03 December 2017
                : 11 January 2018
                Categories
                Review

                Microbiology & Virology
                papillomaviruses,oncoproteins,structure,x-ray,nmr,virus-host interactomics
                Microbiology & Virology
                papillomaviruses, oncoproteins, structure, x-ray, nmr, virus-host interactomics

                Comments

                Comment on this article