19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Early-Acting Peroxin PEX19 Is Redundantly Encoded, Farnesylated, and Essential for Viability in Arabidopsis thaliana

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Peroxisomes are single-membrane bound organelles that are essential for normal development in plants and animals. In mammals and yeast, the peroxin (PEX) proteins PEX3 and PEX19 facilitate the early steps of peroxisome membrane protein (PMP) insertion and pre-peroxisome budding from the endoplasmic reticulum. The PEX3 membrane protein acts as a docking site for PEX19, a cytosolic chaperone for PMPs that delivers PMPs to the endoplasmic reticulum or peroxisomal membrane. PEX19 is farnesylated in yeast and mammals, and we used immunoblotting with prenylation mutants to show that PEX19 also is fully farnesylated in wild-type Arabidopsis thaliana plants. We examined insertional alleles disrupting either of the two Arabidopsis PEX19 isoforms, PEX19A or PEX19B, and detected similar levels of PEX19 protein in the pex19a-1 mutant and wild type; however, PEX19 protein was nearly undetectable in the pex19b-1 mutant. Despite the reduction in PEX19 levels in pex19b-1, both pex19a-1 and pex19b-1 single mutants lacked notable peroxisomal β-oxidation defects and displayed normal levels and localization of peroxisomal matrix and membrane proteins. The pex19a-1 pex19b-1 double mutant was embryo lethal, indicating a redundantly encoded critical role for PEX19 during embryogenesis. Expressing YFP-tagged versions of either PEX19 isoform rescued this lethality, confirming that PEX19A and PEX19B act redundantly in Arabidopsis. We observed that pex19b-1 enhanced peroxisome-related defects of a subset of peroxin-defective mutants, supporting a role for PEX19 in peroxisome function. Together, our data indicate that Arabidopsis PEX19 promotes peroxisome function and is essential for viability.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide insertional mutagenesis of Arabidopsis thaliana.

          J Alonso (2003)
          Over 225,000 independent Agrobacterium transferred DNA (T-DNA) insertion events in the genome of the reference plant Arabidopsis thaliana have been created that represent near saturation of the gene space. The precise locations were determined for more than 88,000 T-DNA insertions, which resulted in the identification of mutations in more than 21,700 of the approximately 29,454 predicted Arabidopsis genes. Genome-wide analysis of the distribution of integration events revealed the existence of a large integration site bias at both the chromosome and gene levels. Insertion mutations were identified in genes that are regulated in response to the plant hormone ethylene.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants.

            Genome sequencing has resulted in the identification of a large number of uncharacterized genes with unknown functions. It is widely recognized that determination of the intracellular localization of the encoded proteins may aid in identifying their functions. To facilitate these localization experiments, we have generated a series of fluorescent organelle markers based on well-established targeting sequences that can be used for co-localization studies. In particular, this organelle marker set contains indicators for the endoplasmic reticulum, the Golgi apparatus, the tonoplast, peroxisomes, mitochondria, plastids and the plasma membrane. All markers were generated with four different fluorescent proteins (FP) (green, cyan, yellow or red FPs) in two different binary plasmids for kanamycin or glufosinate selection, respectively, to allow for flexible combinations. The labeled organelles displayed characteristic morphologies consistent with previous descriptions that could be used for their positive identification. Determination of the intracellular distribution of three previously uncharacterized proteins demonstrated the usefulness of the markers in testing predicted subcellular localizations. This organelle marker set should be a valuable resource for the plant community for such co-localization studies. In addition, the Arabidopsis organelle marker lines can also be employed in plant cell biology teaching labs to demonstrate the distribution and dynamics of these organelles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plant peroxisomes: biogenesis and function.

              Peroxisomes are eukaryotic organelles that are highly dynamic both in morphology and metabolism. Plant peroxisomes are involved in numerous processes, including primary and secondary metabolism, development, and responses to abiotic and biotic stresses. Considerable progress has been made in the identification of factors involved in peroxisomal biogenesis, revealing mechanisms that are both shared with and diverged from non-plant systems. Furthermore, recent advances have begun to reveal an unexpectedly large plant peroxisomal proteome and have increased our understanding of metabolic pathways in peroxisomes. Coordination of the biosynthesis, import, biochemical activity, and degradation of peroxisomal proteins allows for highly dynamic responses of peroxisomal metabolism to meet the needs of a plant. Knowledge gained from plant peroxisomal research will be instrumental to fully understanding the organelle's dynamic behavior and defining peroxisomal metabolic networks, thus allowing the development of molecular strategies for rational engineering of plant metabolism, biomass production, stress tolerance, and pathogen defense.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                29 January 2016
                2016
                : 11
                : 1
                : e0148335
                Affiliations
                [1 ]Department of BioSciences, Rice University, Houston, Texas, United States of America
                [2 ]Department of Biology, Washington University at St. Louis, St. Louis, Missouri, United States of America
                Iwate University, JAPAN
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: LCS BB. Performed the experiments: MMM SEB JMS ZJW LCS BB. Analyzed the data: MMM SEB JMS ZJW LCS BB. Contributed reagents/materials/analysis tools: JMS LCS. Wrote the paper: MMM BB.

                [¤a]

                Current address: Department of Molecular and Cellular Biology, University of Washington, Seattle, Washington, United States of America

                [¤b]

                Current address: Arizona Department of Public Safety, Phoenix, Arizona, United States of America

                [¤c]

                Current address: Department of Stem Cell Transplantation and Cellular Therapy, M.D. Anderson Cancer Center, Houston, Texas, United States of America

                Article
                PONE-D-15-46773
                10.1371/journal.pone.0148335
                4733102
                26824478
                26ef8dd8-9e7c-4529-88c7-bfb2a6c50210
                © 2016 McDonnell et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 25 October 2015
                : 15 January 2016
                Page count
                Figures: 7, Tables: 1, Pages: 19
                Funding
                This research was supported by the National Science Foundation (MCB-1244182 and MCB-1516966 to BB; IOS-1453750 to LCS) and the Robert A. Welch Foundation (C-1309 to BB). Confocal microscopy was performed on equipment obtained through a Shared Instrumentation Grant from the National Institutes of Health (S10RR026399-01 to BB). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Organisms
                Plants
                Seedlings
                Biology and Life Sciences
                Cell Biology
                Cellular Structures and Organelles
                Peroxisomes
                Biology and Life Sciences
                Cell Biology
                Cellular Structures and Organelles
                Cell Membranes
                Membrane Proteins
                Physical Sciences
                Chemistry
                Chemical Reactions
                Prenylation
                Biology and Life Sciences
                Organisms
                Plants
                Brassica
                Arabidopsis Thaliana
                Research and Analysis Methods
                Model Organisms
                Plant and Algal Models
                Arabidopsis Thaliana
                Biology and Life Sciences
                Organisms
                Fungi
                Yeast
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Molecular Probe Techniques
                Immunoblotting
                Research and Analysis Methods
                Molecular Biology Techniques
                Molecular Probe Techniques
                Immunoblotting
                Biology and Life Sciences
                Biochemistry
                Plant Biochemistry
                Biology and Life Sciences
                Plant Science
                Plant Biochemistry
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article