5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Diversity of Bacterial Microbiota of Coastal Halophyte Limonium sinense and Amelioration of Salinity Stress Damage by Symbiotic Plant Growth-Promoting Actinobacterium Glutamicibacter halophytocola KLBMP 5180

      , , , , ,
      Applied and Environmental Microbiology
      American Society for Microbiology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Plant-associated microorganisms are considered a key determinant of plant health and growth. However, little information is available regarding the composition and ecological function of the roots' and leaves' bacterial microbiota of halophytes. Here, using both culture-dependent and culture-independent techniques, we characterized the bacterial communities of the roots and leaves as well as the rhizosphere and bulk soils of the coastal halophyte Limonium sinense in Jiangsu Province, China. We identified 49 representative bacterial strains belonging to 17 genera across all samples, with Glutamicibacter as the most dominant genus. All Glutamicibacter isolates showed multiple potential plant growth promotion traits and tolerated a high concentration of NaCl and a wide pH range. Interestingly, further inoculation experiments showed that the Glutamicibacter halophytocola strain KLBMP 5180 isolated from root tissue significantly promoted host growth under NaCl stress. Indeed, KLBMP 5180 inoculation increased the concentrations of total chlorophyll, proline, antioxidative enzymes, flavonoids, K +, and Ca 2+ in the leaves; the concentrations of malondialdehyde (MDA) and Na + were reduced. A transcriptome analysis identified 1,359 and 328 differentially expressed genes (DEGs) in inoculated seedlings treated with 0 and 250 mM NaCl, respectively. We found that pathways related to phenylpropanoid and flavonoid biosynthesis and ion transport and metabolism might play more important roles in host salt stress tolerance induced by KLBMP 5180 inoculation compared to that in noninoculated leaves. Our results provide novel insights into the complex composition and function of the bacterial microbiota of the coastal halophyte L. sinense and suggest that halophytes might recruit specific bacteria to enhance their tolerance of harsh environments.

          IMPORTANCE Halophytes are important coastal plants often used for the remediation of saline coastal soils. Limonium sinense is well known for its medical properties and phytoremediation of saline soils. However, excessive exploitation and utilization have made the wild resource endangered. The use of endophytic and rhizosphere bacteria may be one of the suitable ways to solve the problem. This study was undertaken to develop approaches to improve the growth of L. sinense using endophytes. The application of actinobacterial endophytes ameliorated salt stress damage of the host via complex physiological and molecular mechanisms. The results also highlight the potential of using habitat-adapted, symbiotic, indigenous endophytic bacteria to enhance the growth and ameliorate abiotic stress damage of host plants growing in special habitats.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Rapid determination of free proline for water-stress studies

          Plant and Soil, 39(1), 205-207
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species.

            Despite recent advances in commercially optimized identification systems, bacterial identification remains a challenging task in many routine microbiological laboratories, especially in situations where taxonomically novel isolates are involved. The 16S rRNA gene has been used extensively for this task when coupled with a well-curated database, such as EzTaxon, containing sequences of type strains of prokaryotic species with validly published names. Although the EzTaxon database has been widely used for routine identification of prokaryotic isolates, sequences from uncultured prokaryotes have not been considered. Here, the next generation database, named EzTaxon-e, is formally introduced. This new database covers not only species within the formal nomenclatural system but also phylotypes that may represent species in nature. In addition to an identification function based on Basic Local Alignment Search Tool (blast) searches and pairwise global sequence alignments, a new objective method of assessing the degree of completeness in sequencing is proposed. All sequences that are held in the EzTaxon-e database have been subjected to phylogenetic analysis and this has resulted in a complete hierarchical classification system. It is concluded that the EzTaxon-e database provides a useful taxonomic backbone for the identification of cultured and uncultured prokaryotes and offers a valuable means of communication among microbiologists who routinely encounter taxonomically novel isolates. The database and its analytical functions can be found at http://eztaxon-e.ezbiocloud.net/.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome-wide analysis of the ERF gene family in Arabidopsis and rice.

              Genes in the ERF family encode transcriptional regulators with a variety of functions involved in the developmental and physiological processes in plants. In this study, a comprehensive computational analysis identified 122 and 139 ERF family genes in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa L. subsp. japonica), respectively. A complete overview of this gene family in Arabidopsis is presented, including the gene structures, phylogeny, chromosome locations, and conserved motifs. In addition, a comparative analysis between these genes in Arabidopsis and rice was performed. As a result of these analyses, the ERF families in Arabidopsis and rice were divided into 12 and 15 groups, respectively, and several of these groups were further divided into subgroups. Based on the observation that 11 of these groups were present in both Arabidopsis and rice, it was concluded that the major functional diversification within the ERF family predated the monocot/dicot divergence. In contrast, some groups/subgroups are species specific. We discuss the relationship between the structure and function of the ERF family proteins based on these results and published information. It was further concluded that the expansion of the ERF family in plants might have been due to chromosomal/segmental duplication and tandem duplication, as well as more ancient transposition and homing. These results will be useful for future functional analyses of the ERF family genes.
                Bookmark

                Author and article information

                Journal
                Applied and Environmental Microbiology
                Appl Environ Microbiol
                American Society for Microbiology
                0099-2240
                1098-5336
                October 01 2018
                September 17 2018
                July 27 2018
                : 84
                : 19
                Article
                10.1128/AEM.01533-18
                6146988
                30054358
                27031b8b-7e9f-4be7-a1de-4ab8c7d6d246
                © 2018
                History

                Comments

                Comment on this article