3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Local Online Motor Babbling: Learning Motor Abundance of A Musculoskeletal Robot Arm

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Motor babbling and goal babbling has been used for sensorimotor learning of highly redundant systems in soft robotics. Recent works in goal babbling has demonstrated successful learning of inverse kinematics (IK) on such systems, and suggests that babbling in the goal space better resolves motor redundancy by learning as few sensorimotor mapping as possible. However, for musculoskeletal robot systems, motor redundancy can be of useful information to explain muscle activation patterns, thus the term motor abundance. In this work, we introduce some simple heuristics to empirically define the unknown goal space, and learn the inverse kinematics of a 10 DoF musculoskeletal robot arm using directed goal babbling. We then further propose local online motor babbling using Covariance Matrix Adaptation Evolution Strategy (CMA-ES), which bootstraps on the collected samples in goal babbling for initialization, such that motor abundance can be queried for any static goal within the defined goal space. The result shows that our motor babbling approach can efficiently explore motor abundance, and gives useful insights in terms of muscle stiffness and synergy.

          Related collections

          Most cited references4

          • Record: found
          • Abstract: found
          • Article: not found

          Muscle synergy organization is robust across a variety of postural perturbations.

          We recently showed that four muscle synergies can reproduce multiple muscle activation patterns in cats during postural responses to support surface translations. We now test the robustness of functional muscle synergies, which specify muscle groupings and the active force vectors produced during postural responses under several biomechanically distinct conditions. We aimed to determine whether such synergies represent a generalized control strategy for postural control or if they are merely specific to each postural task. Postural responses to multidirectional translations at different fore-hind paw distances and to multidirectional rotations at the preferred stance distance were analyzed. Five synergies were required to adequately reconstruct responses to translation at the preferred stance distance-four were similar to our previous analysis of translation, whereas the fifth accounted for the newly added background activity during quiet stance. These five control synergies could account for > 80% total variability or r2 > 0.6 of the electromyographic and force tuning curves for all other experimental conditions. Forces were successfully reconstructed but only when they were referenced to a coordinate system that rotated with the limb axis as stance distance changed. Finally, most of the functional muscle synergies were similar across all of the six cats in terms of muscle synergy number, synergy activation patterns, and synergy force vectors. The robustness of synergy organization across perturbation types, postures, and animals suggests that muscle synergies controlling task-variables are a general construct used by the CNS for balance control.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Active learning of inverse models with intrinsically motivated goal exploration in robots

              Bookmark
              • Record: found
              • Abstract: not found
              • Book: not found

              CMA-ES/Pycma on Github

                Bookmark

                Author and article information

                Journal
                21 June 2019
                Article
                1906.09013
                273a16fd-3165-4082-b5ac-3a4eb429b7c9

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                This is a preprint accepted by IROS 2019
                cs.RO

                Robotics
                Robotics

                Comments

                Comment on this article