4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genomic Profile and BRCA-1 Promoter Methylation Status in BRCA Mutated Ovarian Cancer: New Insights in Predictive Biomarkers of Olaparib Response

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective: We assessed the genomic profile of four representative BRCA-mutated ovarian cancer (OC) patients treated with olaparib to investigate the relationship between intratumor heterogeneity and response to olaparib treatment. The main aim is to identify possible predictive biomarkers of response to olaparib through the analysis of HRD or not HRD genes and the definition of BRCA1 promoter methylation status.

          Methods: DNA, isolated from formalin-fixed, paraffin-embedded (FFPE) diagnostic OC tissues, was analyzed by FoundationOneCDx™. This assay detects alterations in a total panel of 324 genes, using the Illumina® HiSeq 4000 platform. Methylation analysis of the BRCA gene promoter was carried out by pyrosequencing with PyroMark Q24 platform (Qiagen), an in vitro nucleic acid sequence-based detection test based on pyrosequencing technology for quantitative measurements of methylation status.

          Results: Case #1 and #2 were defined Long-term responders since they received olaparib for 27 and 36 months, respectively. These remarkable results could be explained, at least in part, by the presence of somatic IDH1 mutation in case #1 and PI3K and SOX2 amplification in the case #2. In case #3, the somatic NF1 mutation appeared to be related to the short duration of response. In the case #4, in which the patients is on olaparib from 1 year achieving a stable disease, a somatic mutation of BRCA1 was recorded. Moreover, in all cases, levels of BRCA1 promoter were strictly related to olaparib response.

          Conclusions: Based on our experience, genomic analysis of tumor tissue at diagnosis might help to determine the future response to olaparib in advanced OC setting, revealing predictive biomarkers beyond BRCA 1-2 and HRD status.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer

          Background: Defects in BRCA1, BRCA2, and other members of the homologous recombination pathway have potential therapeutic relevance when used to support agents that introduce or exploit double-stranded DNA breaks. This study examines the association between homologous recombination defects and genomic patterns of loss of heterozygosity (LOH). Methods: Ovarian tumours from two independent data sets were characterised for defects in BRCA1, BRCA2, and RAD51C, and LOH profiles were generated. Publically available data were downloaded for a third independent data set. The same analyses were performed on 57 cancer cell lines. Results: Loss of heterozygosity regions of intermediate size were observed more frequently in tumours with defective BRCA1 or BRCA2 (P=10−11). The homologous recombination deficiency (HRD) score was defined as the number of these regions observed in a tumour sample. The association between HRD score and BRCA deficiency was validated in two independent ovarian cancer data sets (P=10−5 and 10−29), and identified breast and pancreatic cell lines with BRCA defects. Conclusion: The HRD score appears capable of detecting homologous recombination defects regardless of aetiology or mechanism. This score could facilitate the use of PARP inhibitors and platinum in breast, ovarian, and other cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeting p53 in vivo: a first-in-human study with p53-targeting compound APR-246 in refractory hematologic malignancies and prostate cancer.

            APR-246 (PRIMA-1MET) is a novel drug that restores transcriptional activity of unfolded wild-type or mutant p53. The main aims of this first-in-human trial were to determine maximum-tolerated dose (MTD), safety, dose-limiting toxicities (DLTs), and pharmacokinetics (PK) of APR-246. APR-246 was administered as a 2-hour intravenous infusion once per day for 4 consecutive days in 22 patients with hematologic malignancies and prostate cancer. Acute myeloid leukemia (AML; n = 7) and prostate cancer (n = 7) were the most frequent diagnoses. Starting dose was 2 mg/kg with dose escalations up to 90 mg/kg. MTD was defined as 60 mg/kg. The drug was well tolerated, and the most common adverse effects were fatigue, dizziness, headache, and confusion. DLTs were increased ALT/AST (n = 1), dizziness, confusion, and sensory disturbances (n = 2). PK showed little interindividual variation and were neither dose nor time dependent; terminal half-life was 4 to 5 hours. Tumor cells showed cell cycle arrest, increased apoptosis, and upregulation of p53 target genes in several patients. Global gene expression analysis revealed changes in genes regulating proliferation and cell death. One patient with AML who had a p53 core domain mutation showed a reduction of blast percentage from 46% to 26% in the bone marrow, and one patient with non-Hodgkin's lymphoma with a p53 splice site mutation showed a minor response. We conclude that APR-246 is safe at predicted therapeutic plasma levels, shows a favorable pharmacokinetic profile, and can induce p53-dependent biologic effects in tumor cells in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Methylation of all BRCA1 copies predicts response to the PARP inhibitor rucaparib in ovarian carcinoma

              Accurately identifying patients with high-grade serous ovarian carcinoma (HGSOC) who respond to poly(ADP-ribose) polymerase inhibitor (PARPi) therapy is of great clinical importance. Here we show that quantitative BRCA1 methylation analysis provides new insight into PARPi response in preclinical models and ovarian cancer patients. The response of 12 HGSOC patient-derived xenografts (PDX) to the PARPi rucaparib was assessed, with variable dose-dependent responses observed in chemo-naive BRCA1/2-mutated PDX, and no responses in PDX lacking DNA repair pathway defects. Among BRCA1-methylated PDX, silencing of all BRCA1 copies predicts rucaparib response, whilst heterozygous methylation is associated with resistance. Analysis of 21 BRCA1-methylated platinum-sensitive recurrent HGSOC (ARIEL2 Part 1 trial) confirmed that homozygous or hemizygous BRCA1 methylation predicts rucaparib clinical response, and that methylation loss can occur after exposure to chemotherapy. Accordingly, quantitative BRCA1 methylation analysis in a pre-treatment biopsy could allow identification of patients most likely to benefit, and facilitate tailoring of PARPi therapy.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                29 November 2019
                2019
                : 9
                : 1289
                Affiliations
                [1] 1Division of Medical Oncology, Department of Precision Medicine, School of Medicine, Luigi Vanvitelli University of Campania , Naples, Italy
                [2] 2Istituto Nazionale per lo Studio e la Cura dei Tumori “Fondazione G. Pascale”, IRCCS , Naples, Italy
                Author notes

                Edited by: Ivan Garcia-Bassets, University of California, San Diego, United States

                Reviewed by: Valerio Gallotta, Agostino Gemelli University Polyclinic, Italy; Lorena Losi, University of Modena and Reggio Emilia, Italy

                *Correspondence: Anna Diana annadiana88@ 123456gmail.com

                This article was submitted to Women's Cancer, a section of the journal Frontiers in Oncology

                Article
                10.3389/fonc.2019.01289
                6895028
                31850198
                273ef549-b220-4001-8eba-5f0372878c4b
                Copyright © 2019 Franzese, Centonze, Diana, Lombardi, Carlino, Guerrera, De Vita, Caraglia, Pignata, Ciardiello and Orditura.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 August 2019
                : 06 November 2019
                Page count
                Figures: 1, Tables: 3, Equations: 0, References: 36, Pages: 9, Words: 6390
                Categories
                Oncology
                Original Research

                Oncology & Radiotherapy
                ovarian cancer,genomic profiles,brca 1/2 mutation carriers,promoter methylation,olaparib (lynparza™)

                Comments

                Comment on this article