+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      New insights into the phylogeny of Sinocarum (Apiaceae, Apioideae) based on morphological and molecular data

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Sinocarum is a Sino-Himalayan endemic genus of Apiaceae and distributed in high-elevations from Nepal to SW China. In this study, morphological characteristics were combined with nuclear internal transcribed spacer (ITS) and two chloroplast DNA (cpDNA) intron sequences ( rpl16 and rps16) to determine the phylogenetic placement of Sinocarum and the infrageneric relationships between five Sinocarum species. The results confirmed that Sinocarum was a polyphyletic group separated into two clades, Acronema and East Asia clades. S. coloratum , the generic type of Sinocarum , S. cruciatum , S. vaginatum and S. filicinum are in the Acronema clade. Among them, the first three species are clustered into a subclade and are closely related to the genus Acronema . While S. filicinum has a close affinity with Meeboldia . S. schizopetalum did not ally with its congeners we collected and is allied closely with members of the distantly related East Asia clade. In addition, the fruit of the Acronema clade Sinocarum species is usually oblong-ovoid or ovoid, and the pollen is super-rectangular, while the Sinocarum species in the East Asia clade have broad-ovoid fruit and sub-rhomboidal pollen. This study has furnished cumulative evidence to reduce phylogenetic uncertainty and provide a more comprehensive description of the plant morphology, fruit morphology and anatomy, and pollen morphology of these five Chinese Sinocarum species.

          Related collections

          Most cited references 44

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.

          We present the latest version of the Molecular Evolutionary Genetics Analysis (Mega) software, which contains many sophisticated methods and tools for phylogenomics and phylomedicine. In this major upgrade, Mega has been optimized for use on 64-bit computing systems for analyzing larger datasets. Researchers can now explore and analyze tens of thousands of sequences in Mega The new version also provides an advanced wizard for building timetrees and includes a new functionality to automatically predict gene duplication events in gene family trees. The 64-bit Mega is made available in two interfaces: graphical and command line. The graphical user interface (GUI) is a native Microsoft Windows application that can also be used on Mac OS X. The command line Mega is available as native applications for Windows, Linux, and Mac OS X. They are intended for use in high-throughput and scripted analysis. Both versions are available from www.megasoftware.net free of charge.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space

            Since its introduction in 2001, MrBayes has grown in popularity as a software package for Bayesian phylogenetic inference using Markov chain Monte Carlo (MCMC) methods. With this note, we announce the release of version 3.2, a major upgrade to the latest official release presented in 2003. The new version provides convergence diagnostics and allows multiple analyses to be run in parallel with convergence progress monitored on the fly. The introduction of new proposals and automatic optimization of tuning parameters has improved convergence for many problems. The new version also sports significantly faster likelihood calculations through streaming single-instruction-multiple-data extensions (SSE) and support of the BEAGLE library, allowing likelihood calculations to be delegated to graphics processing units (GPUs) on compatible hardware. Speedup factors range from around 2 with SSE code to more than 50 with BEAGLE for codon problems. Checkpointing across all models allows long runs to be completed even when an analysis is prematurely terminated. New models include relaxed clocks, dating, model averaging across time-reversible substitution models, and support for hard, negative, and partial (backbone) tree constraints. Inference of species trees from gene trees is supported by full incorporation of the Bayesian estimation of species trees (BEST) algorithms. Marginal model likelihoods for Bayes factor tests can be estimated accurately across the entire model space using the stepping stone method. The new version provides more output options than previously, including samples of ancestral states, site rates, site d N /d S rations, branch rates, and node dates. A wide range of statistics on tree parameters can also be output for visualization in FigTree and compatible software.
              • Record: found
              • Abstract: found
              • Article: not found

              Clustal W and Clustal X version 2.0.

              The Clustal W and Clustal X multiple sequence alignment programs have been completely rewritten in C++. This will facilitate the further development of the alignment algorithms in the future and has allowed proper porting of the programs to the latest versions of Linux, Macintosh and Windows operating systems. The programs can be run on-line from the EBI web server: http://www.ebi.ac.uk/tools/clustalw2. The source code and executables for Windows, Linux and Macintosh computers are available from the EBI ftp site ftp://ftp.ebi.ac.uk/pub/software/clustalw2/

                Author and article information

                Pensoft Publishers
                17 March 2021
                : 175
                : 13-32
                [1 ] Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, China Sichuan University Chengdu China
                [2 ] Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, China Sichuan University Chengdu China
                Author notes
                Corresponding author: Xing-Jin He ( xjhe@ 123456scu.edu.cn )

                Academic editor: A. Sennikov

                Yan-Ping Xiao, Xian-Lin Guo, Megan Price, Wei Gou, Song-Dong Zhou, Xing-Jin He

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                This work was supported by the National Natural Science Foundation of China (Grant Nos. 31872647, 32070221), National Specimen Information Infrastructure, Educational Specimen Sub-Platform (Grant No. 2005DKA21403-JK), the fourth national survey of traditional Chinese medicine resources (Grant No. 2019PC002).
                Research Article
                Molecular Systematics

                Plant science & Botany

                apiaceae , morphology, phylogeny, sinocarum


                Comment on this article