17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      G protein–coupled receptors activate p38 MAPK via a non-canonical TAB1–TAB2– and TAB1–TAB3–dependent pathway in endothelial cells

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endothelial dysfunction is induced by inflammatory mediators including multiple G protein–coupled receptor (GPCR) agonists. However, the GPCR signaling pathways that promote endothelial dysfunction are incompletely understood. We previously showed that thrombin promotes endothelial barrier disruption through autophosphorylation and activation of p38 mitogen-activated protein kinase (MAPK) via a non-canonical transforming growth factor-β–activated protein kinase-1–binding protein-1 (TAB1) and TAB2–dependent pathway rather than the canonical three-tiered kinase cascade. Here, we sought to determine whether other GPCR agonists stimulate p38 MAPK activation via this non-canonical pathway in human endothelial cells derived from different vascular beds. Using primary human umbilical vein endothelial cells (HUVECs), HUVEC-derived EA.hy926 cells, and human dermal microvascular endothelial cells (HDMECs), we found that both non-canonical and canonical p38 activation pathways components are expressed in these various endothelial cell types, including TAB3, a structurally-related TAB2 homolog. Moreover, multiple GPCRs agonists, including thrombin, histamine, prostaglandin E 2 , and ADP, stimulated robust p38 autophosphorylation, whereas phosphorylation of the upstream MAPKs MAP kinase kinase 3 (MKK3) and MKK6, was virtually undetectable, indicating that non-canonical p38 activation may exist for other GPCRs. Indeed, in EA.hy926 cells, thrombin- and histamine-stimulated p38 activation depended on TAB1–TAB2, whereas in primary HUVECs, both TAB1–TAB2 and TAB1–TAB3 were required for p38 activation. In HDMECs, thrombin-induced p38 activation depended on TAB1–TAB3, but histamine-induced p38 activation required TAB1–TAB2. Moreover, thrombin- and histamine-stimulated interleukin-6 production required both TAB1–TAB2 and TAB1–TAB3 in HUVEC. We conclude that multiple GPCR agonists utilize non-canonical TAB1–TAB2 and TAB1–TAB3–dependent p38 activation to promote endothelial inflammatory responses.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of endothelial permeability via paracellular and transcellular transport pathways.

          The endothelium functions as a semipermeable barrier regulating tissue fluid homeostasis and transmigration of leukocytes and providing essential nutrients across the vessel wall. Transport of plasma proteins and solutes across the endothelium involves two different routes: one transcellular, via caveolae-mediated vesicular transport, and the other paracellular, through interendothelial junctions. The permeability of the endothelial barrier is an exquisitely regulated process in the resting state and in response to extracellular stimuli and mediators. The focus of this review is to provide a comprehensive overview of molecular and signaling mechanisms regulating endothelial barrier permeability with emphasis on the cross-talk between paracellular and transcellular transport pathways.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            VE-cadherin and endothelial adherens junctions: active guardians of vascular integrity.

            VE-cadherin is a component of endothelial cell-to-cell adherens junctions, and it has a key role in the maintenance of vascular integrity. During embryo development, VE-cadherin is required for the organization of a stable vascular system, and in the adult it controls vascular permeability and inhibits unrestrained vascular growth. The mechanisms of action of VE-cadherin are complex and include reshaping and organization of the endothelial cell cytoskeleton and modulation of gene transcription. Here we review some of the most important pathways through which VE-cadherin modulates vascular homeostasis and discuss the emerging concepts in the overall biological role of this protein. Copyright © 2013 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              G protein regulation of MAPK networks.

              G proteins provide signal-coupling mechanisms to heptahelical cell surface receptors and are critically involved in the regulation of different mitogen-activated protein kinase (MAPK) networks. The four classes of G proteins, defined by the G(s), G(i), G(q) and G(12) families, regulate ERK1/2, JNK, p38MAPK, ERK5 and ERK6 modules by different mechanisms. The alpha- as well as betagamma-subunits are involved in the regulation of these MAPK modules in a context-specific manner. While the alpha- and betagamma-subunits primarily regulate the MAPK pathways via their respective effector-mediated signaling pathways, recent studies have unraveled several novel signaling intermediates including receptor tyrosine kinases and small GTPases through which these G-protein subunits positively as well as negatively regulate specific MAPK modules. Multiple mechanisms together with specific scaffold proteins that can link G-protein-coupled receptors or G proteins to distinct MAPK modules contribute to the context-specific and spatio-temporal regulation of mitogen-activated protein signaling networks by G proteins.
                Bookmark

                Author and article information

                Contributors
                Journal
                Journal of Biological Chemistry
                Journal of Biological Chemistry
                American Society for Biochemistry & Molecular Biology (ASBMB)
                00219258
                April 2019
                April 2019
                : 294
                : 15
                : 5867-5878
                Article
                10.1074/jbc.RA119.007495
                6463731
                30760523
                278675c0-9d97-409b-be39-d93af0b4dd5d
                © 2019

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article