39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Submicroscopic Gametocytes and the Transmission of Antifolate-Resistant Plasmodium falciparum in Western Kenya

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Single nucleotide polymorphisms (SNPs) in the dhfr and dhps genes are associated with sulphadoxine-pyrimethamine (SP) treatment failure and gametocyte carriage. This may result in enhanced transmission of mutant malaria parasites, as previously shown for chloroquine resistant parasites. In the present study, we determine the association between parasite mutations, submicroscopic P. falciparum gametocytemia and malaria transmission to mosquitoes.

          Methodology/Principal Findings

          Samples from children treated with SP alone or in combination with artesunate (AS) or amodiaquine were genotyped for SNPs in the dhfr and dhps genes. Gametocytemia was determined by microscopy and Pfs25 RNA–based quantitative nucleic acid sequence–based amplification ( Pfs25 QT-NASBA). Transmission was determined by membrane-feeding assays. We observed no wild type infections, 66.5% (127/191) of the infections expressed mutations at all three dhfr codons prior to treatment. The presence of all three mutations was not related to higher Pfs25 QT-NASBA gametocyte prevalence or density during follow-up, compared to double mutant infections. The proportion of infected mosquitoes or oocyst burden was also not related to the number of mutations. Addition of AS to SP reduced gametocytemia and malaria transmission during follow-up.

          Conclusions/Significance

          In our study population where all infections had at least a double mutation in the dhfr gene, additional mutations were not related to increased submicroscopic gametocytemia or enhanced malaria transmission. The absence of wild-type infections is likely to have reduced our power to detect differences. Our data further support the use of ACT to reduce the transmission of drug-resistant malaria parasites.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Reemergence of chloroquine-sensitive Plasmodium falciparum malaria after cessation of chloroquine use in Malawi.

          In 1993, Malawi became the first African country to replace chloroquine with sulfadoxine-pyrimethamine nationwide in response to high rates of chloroquine-resistant falciparum malaria. To determine whether withdrawal of chloroquine can lead to the reemergence of chloroquine sensitivity, the prevalence of the pfcrt 76T molecular marker for chloroquine-resistant Plasmodium falciparum malaria was retrospectively measured in Blantyre, Malawi. The prevalence of the chloroquine-resistant pfcrt genotype decreased from 85% in 1992 to 13% in 2000. In 2001, chloroquine cleared 100% of 63 asymptomatic P. falciparum infections, no isolates were resistant to chloroquine in vitro, and no infections with the chloroquine-resistant pfcrt genotype were detected. A concerted national effort to withdraw chloroquine from use has been followed by a return of chloroquine-sensitive falciparum malaria in Malawi. The reintroduction of chloroquine, ideally in combination with another antimalarial drug, should be considered in areas where chloroquine resistance has declined and safe and affordable alternatives remain unavailable.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular markers for failure of sulfadoxine-pyrimethamine and chlorproguanil-dapsone treatment of Plasmodium falciparum malaria.

            Molecular assays for monitoring sulfadoxine-pyrimethamine-resistant Plasmodium falciparum have not been implemented because of the genetic and statistical complexity of the parasite mutations that confer resistance and their relation to treatment outcomes. This study analyzed pretreatment dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS) genotypes and treatment outcomes in a double-blind, placebo-controlled trial of sulfadoxine-pyrimethamine and chlorproguanil-dapsone treatment for uncomplicated P. falciparum malaria. Multiple logistic regression was used to identify mutations that were predictive of treatment failure and to identify interactions and confounding factors. Infections caused by parasites with 3 DHFR mutations and 2 DHPS mutations (the "quintuple mutant") were associated with sulfadoxine-pyrimethamine treatment failure but not with chlorproguanil-dapsone treatment failure. The presence of a single DHFR mutation (Arg-59) with a single DHPS mutation (Glu-540) accurately predicted the presence of the quintuple mutant. If this model is validated in other populations, it will finally be possible to use molecular markers for surveillance of antifolate-resistant P. falciparum malaria in Africa.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Submicroscopic Plasmodium falciparum gametocyte densities frequently result in mosquito infection.

              Submicroscopic Plasmodium falciparum gametocytemia (<5,000 gametocytes/mL) is common and may result in mosquito infection. We assessed the relation between gametocyte density and mosquito infection under experimental and field conditions using real-time quantitative nucleic acid sequence-based amplification (QT-NASBA) for gametocyte quantification. Serial dilutions of NF54 P. falciparum gametocytes showed a positive association between gametocyte density and the proportion of infected mosquitoes (beta=6.1; 95% confidence interval [CI], 2.7-9.6; P=0.001). Successful infection became unlikely below an estimated density of 250-300 gametocytes/mL. In the field, blood samples of 100 naturally infected children showed a positive association between gametocyte density and oocyst counts in mosquitoes (beta=0.38; 95% CI, 0.14-0.61; P=0.002). The relative contribution to malaria transmission was similar for carriers with submicroscopic and microscopic gametocytemia. Our results show that transmission occurs efficiently at submicroscopic gametocyte densities and that carriers harboring submicroscopic gametocytemia constitute a considerable proportion of the human infectious reservoir.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2009
                5 February 2009
                : 4
                : 2
                : e4364
                Affiliations
                [1 ]Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
                [2 ]Centre for Medical Parasitology at the Department of International Health, Immunology and Microbiology, University of Copenhagen, and at the Department of infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
                [3 ]Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
                [4 ]Kenya Medical Research Institute, Centre for Biotechnology Research and Development, Nairobi, Kenya
                [5 ]Human Health Division, International Centre of Insect Physiology and Ecology, Mbita, Kenya
                [6 ]Institut de Recherche pour le Développement, Bobo Dioulasso, Burkina Faso
                Mahidol University, Thailand
                Author notes

                Conceived and designed the experiments: CJS SO LG SR TB. Performed the experiments: MO MA PS CH LG TB. Analyzed the data: MO MA CJS TB. Contributed reagents/materials/analysis tools: PS. Wrote the paper: MO MA CJS SO SR TB.

                Article
                08-PONE-RA-04586R1
                10.1371/journal.pone.0004364
                2632751
                19194499
                278d74d3-c18c-42dc-a293-2f04ce0b7154
                Oesterholt et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 8 May 2008
                : 22 December 2008
                Page count
                Pages: 7
                Categories
                Research Article
                Evolutionary Biology/Microbial Evolution and Genomics
                Infectious Diseases/Epidemiology and Control of Infectious Diseases
                Infectious Diseases/Protozoal Infections

                Uncategorized
                Uncategorized

                Comments

                Comment on this article