25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Visualization of Protein Folding Funnels in Lattice Models

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Protein folding occurs in a very high dimensional phase space with an exponentially large number of states, and according to the energy landscape theory it exhibits a topology resembling a funnel. In this statistical approach, the folding mechanism is unveiled by describing the local minima in an effective one-dimensional representation. Other approaches based on potential energy landscapes address the hierarchical structure of local energy minima through disconnectivity graphs. In this paper, we introduce a metric to describe the distance between any two conformations, which also allows us to go beyond the one-dimensional representation and visualize the folding funnel in 2D and 3D. In this way it is possible to assess the folding process in detail, e.g., by identifying the connectivity between conformations and establishing the paths to reach the native state, in addition to regions where trapping may occur. Unlike the disconnectivity maps method, which is based on the kinetic connections between states, our methodology is based on structural similarities inferred from the new metric. The method was developed in a 27-mer protein lattice model, folded into a 3×3×3 cube. Five sequences were studied and distinct funnels were generated in an analysis restricted to conformations from the transition-state to the native configuration. Consistent with the expected results from the energy landscape theory, folding routes can be visualized to probe different regions of the phase space, as well as determine the difficulty in folding of the distinct sequences. Changes in the landscape due to mutations were visualized, with the comparison between wild and mutated local minima in a single map, which serves to identify different trapping regions. The extension of this approach to more realistic models and its use in combination with other approaches are discussed.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Protein folding and misfolding.

          The manner in which a newly synthesized chain of amino acids transforms itself into a perfectly folded protein depends both on the intrinsic properties of the amino-acid sequence and on multiple contributing influences from the crowded cellular milieu. Folding and unfolding are crucial ways of regulating biological activity and targeting proteins to different cellular locations. Aggregation of misfolded proteins that escape the cellular quality-control mechanisms is a common feature of a wide range of highly debilitating and increasingly prevalent diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Topological and energetic factors: what determines the structural details of the transition state ensemble and "en-route" intermediates for protein folding? An investigation for small globular proteins.

            Recent experimental results suggest that the native fold, or topology, plays a primary role in determining the structure of the transition state ensemble, at least for small, fast-folding proteins. To investigate the extent of the topological control of the folding process, we studied the folding of simplified models of five small globular proteins constructed using a Go-like potential to retain the information about the native structures but drastically reduce the energetic frustration and energetic heterogeneity among residue-residue native interactions. By comparing the structure of the transition state ensemble (experimentally determined by Phi-values) and of the intermediates with those obtained using our models, we show that these energetically unfrustrated models can reproduce the global experimentally known features of the transition state ensembles and "en-route" intermediates, at least for the analyzed proteins. This result clearly indicates that, as long as the protein sequence is sufficiently minimally frustrated, topology plays a central role in determining the folding mechanism. Copyright 2000 Academic Press.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Protein folding funnels: a kinetic approach to the sequence-structure relationship.

              A lattice model of protein folding is developed to distinguish between amino acid sequences that do and do not fold into unique conformations. Although Monte Carlo simulations provide insights into the long-time processes involved in protein folding, these simulations cannot systematically chart the conformational energy surface that enables folding. By assuming that protein folding occurs after chain collapse, a kinetic map of important pathways on this surface is constructed through the use of an analytical theory of probability flow. Convergent kinetic pathways, or "folding funnels," guide folding to a unique, stable, native conformation. Solution of the probability flow equations is facilitated by limiting treatment to diffusion between geometrically similar collapsed conformers. Similarity is measured in terms of a reconfigurational distance. Two specific amino acid sequences are deemed foldable and nonfoldable because one gives rise to a single, large folding funnel leading to a native conformation and the other has multiple pathways leading to several stable conformers. Monte Carlo simulations demonstrate that folding funnel calculations accurately predict the fact of and the pathways involved in folding-specific sequences. The existence of folding funnels for specific sequences suggests that geometrically related families of stable, collapsed conformers fulfill kinetic and thermodynamic requirements of protein folding.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                10 July 2014
                : 9
                : 7
                : e100861
                Affiliations
                [1 ]Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, Sao José do Rio Preto, São Paulo, Brazil
                [2 ]Instituto de Ciências Matemáticas e Computação, Universidade de São Paulo, São Carlos, São Paulo, Brazil
                [3 ]Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
                Weizmann Institute of Science, Israel
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: VBPL ABOJ. Performed the experiments: ABOJ FMF. Analyzed the data: ABOJ FMF FVP VBPL. Contributed reagents/materials/analysis tools: ABOJ FMF FVP. Wrote the paper: ABOJ VBPL ONOJ.

                Article
                PONE-D-14-08263
                10.1371/journal.pone.0100861
                4091862
                25010343
                27a8af79-06b7-4a7e-85bf-3a8b7b65518d
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 21 February 2014
                : 31 May 2014
                Page count
                Pages: 9
                Funding
                This work was supported by FAPESP, CNPq, CAPES and nBioNet network (Brazil). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Biochemistry
                Proteins
                Protein Structure
                Protein Folding
                Biophysics
                Biophysical Simulations
                Computational Biology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article