26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Anti-inflammatory effect of simvastatin in an experimental model of spinal cord trauma: involvement of PPAR-α

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Statins such as simvastatin are inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase used in the prevention of cardiovascular disease. In addition to their cholesterol-lowering activities, statins exert pleiotropic anti-inflammatory effects, which might contribute to their beneficial effects on lipid-unrelated inflammatory diseases. Recently it has been demonstrated that the peroxisome proliferator-activated receptor (PPAR)-α mediates anti-inflammatory effects of simvastatin in vivo models of acute inflammation. Moreover, previous results suggest that PPAR-α plays a role in control of secondary inflammatory process associated with spinal cord injury (SCI).

          Methods

          With the aim to characterize the role of PPAR-α in simvastatin activity, we tested the efficacy of simvastatin (10 mg/kg dissolved in saline i.p. 1 h and 6 h after the trauma) in an experimental model of SCI induced in mice by extradural compression of the spinal cord (T6-T7 level) using an aneurysm clip with a closing force of 24 g via a four-level T5-T8 laminectomy, and comparing mice lacking PPAR-α (PPAR-α KO) with wild type (WT) mice. In order to elucidate whether the effects of simvastatin are due to activation of the PPAR-α, we also investigated the effect of a PPAR-α antagonist, GW6471 (1 mg/kg administered i.p. 30 min prior treatment with simvastatin) on the protective effects of on simvastatin.

          Results

          Results indicate that simvastatin activity is weakened in PPAR-α KO mice, as compared to WT controls. In particular, simvastatin was less effective in PPAR-α KO, compared to WT mice, as evaluated by inhibition of the degree of spinal cord inflammation, neutrophil infiltration, nitrotyrosine formation, pro-inflammmatory cytokine expression, nuclear factor (NF)-κB activation, inducible nitric-oxide synthase (iNOS) expression, and apoptosis. In addition we demonstrated that GW6471 significantly antagonized the effect of the statin and thus abolished the protective effect.

          Conclusions

          This study indicates that PPAR-α can contribute to the anti-inflammatory activity of simvastatin in SCI.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation.

          Nuclear factor-kappaB (NF-kappaB) is a transcription factor that has crucial roles in inflammation, immunity, cell proliferation and apoptosis. Activation of NF-kappaB mainly occurs via IkappaB kinase (IKK)-mediated phosphorylation of inhibitory molecules, including IkappaBalpha. Optimal induction of NF-kappaB target genes also requires phosphorylation of NF-kappaB proteins, such as p65, within their transactivation domain by a variety of kinases in response to distinct stimuli. Whether, and how, phosphorylation modulates the function of other NF-kappaB and IkappaB proteins, such as B-cell lymphoma 3, remains unclear. The identification and characterization of all the kinases known to phosphorylate NF-kappaB and IkappaB proteins are described here. Because deregulation of NF-kappaB and IkappaB phosphorylations is a hallmark of chronic inflammatory diseases and cancer, newly designed drugs targeting these constitutively activated signalling pathways represent promising therapeutic tools.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The cellular inflammatory response in human spinal cords after injury.

            Spinal cord injury (SCI) provokes an inflammatory response that generates substantial secondary damage within the cord but also may contribute to its repair. Anti-inflammatory treatment of human SCI and its timing must be based on knowledge of the types of cells participating in the inflammatory response, the time after injury when they appear and then decrease in number, and the nature of their actions. Using post-mortem spinal cords, we evaluated the time course and distribution of pathological change, infiltrating neutrophils, monocytes/macrophages and lymphocytes, and microglial activation in injured spinal cords from patients who were 'dead at the scene' or who survived for intervals up to 1 year after SCI. SCI caused zones of pathological change, including areas of inflammation and necrosis in the acute cases, and cystic cavities with longer survival (Zone 1), mantles of less severe change, including axonal swellings, inflammation and Wallerian degeneration (Zone 2) and histologically intact areas (Zone 3). Zone 1 areas increased in size with time after injury whereas the overall injury (size of the Zones 1 and 2 combined) remained relatively constant from the time (1-3 days) when damage was first visible. The distribution of inflammatory cells correlated well with the location of Zone 1, and sometimes of Zone 2. Neutrophils, visualized by their expression of human neutrophil alpha-defensins (defensin), entered the spinal cord by haemorrhage or extravasation, were most numerous 1-3 days after SCI, and were detectable for up to 10 days after SCI. Significant numbers of activated CD68-immunoreactive ramified microglia and a few monocytes/macrophages were in injured tissue within 1-3 days of SCI. Activated microglia, a few monocytes/macrophages and numerous phagocytic macrophages were present for weeks to months after SCI. A few CD8(+) lymphocytes were in the injured cords throughout the sampling intervals. Expression by the inflammatory cells of the oxidative enzymes myeloperoxidase (MPO) and nicotinamide adenine dinucleotide phosphate oxidase (gp91(phox)), and of the pro-inflammatory matrix metalloproteinase (MMP)-9, was analysed to determine their potential to cause oxidative and proteolytic damage. Oxidative activity, inferred from MPO and gp91(phox) immunoreactivity, was primarily associated with neutrophils and activated microglia. Phagocytic macrophages had weak or no expression of MPO or gp91(phox). Only neutrophils expressed MMP-9. These data indicate that potentially destructive neutrophils and activated microglia, replete with oxidative and proteolytic enzymes, appear within the first few days of SCI, suggesting that anti-inflammatory 'neuroprotective' strategies should be directed at preventing early neutrophil influx and modifying microglial activation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The PPARalpha-leukotriene B4 pathway to inflammation control.

              Inflammation is a local immune response to 'foreign' molecules, infection and injury. Leukotriene B4, a potent chemotactic agent that initiates, coordinates, sustains and amplifies the inflammatory response, is shown to be an activating ligand for the transcription factor PPARalpha. Because PPARalpha regulates the oxidative degradation of fatty acids and their derivatives, like this lipid mediator, a feedback mechanism is proposed that controls the duration of an inflammatory response and the clearance of leukotriene B4 in the liver. Thus PPARalpha offers a new route to the development of anti- or pro-inflammatory reagents.
                Bookmark

                Author and article information

                Journal
                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central
                1742-2094
                2012
                26 April 2012
                : 9
                : 81
                Affiliations
                [1 ]Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, 98125 Messina, Italy
                [2 ]Department of Experimental Medicine, Second University of Naples, via Costantinopoli 16, 80138 Naples, Italy
                [3 ]IRCCS Centro Neurolesi "Bonino-Pulejo", via Provinciale Palermo, C. da Casazza, 98124, Messina, Italy
                Article
                1742-2094-9-81
                10.1186/1742-2094-9-81
                3372420
                22537532
                27ca160f-c71f-438e-9bbe-34c42247af29
                Copyright ©2012 Esposito et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 May 2011
                : 26 April 2012
                Categories
                Research

                Neurosciences
                ppar-α,inflammation,sci,simvastatin
                Neurosciences
                ppar-α, inflammation, sci, simvastatin

                Comments

                Comment on this article