14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Insulin, Aging, and the Brain: Mechanisms and Implications

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is now an impressive body of literature implicating insulin and insulin signaling in successful aging and longevity. New information from in vivo and in vitro studies concerning insulin and insulin receptors has extended our understanding of the physiological role of insulin in the brain. However, the relevance of these to aging and longevity remains to be elucidated. Here, we review advances in our understanding of the physiological role of insulin in the brain, how insulin gets into the brain, and its relevance to aging and longevity. Furthermore, we examine possible future therapeutic applications and implications of insulin in the context of available models of delayed and accelerated aging.

          Related collections

          Most cited references147

          • Record: found
          • Abstract: found
          • Article: not found

          daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans.

          A C. elegans neurosecretory signaling system regulates whether animals enter the reproductive life cycle or arrest development at the long-lived dauer diapause stage. daf-2, a key gene in the genetic pathway that mediates this endocrine signaling, encodes an insulin receptor family member. Decreases in DAF-2 signaling induce metabolic and developmental changes, as in mammalian metabolic control by the insulin receptor. Decreased DAF-2 signaling also causes an increase in life-span. Life-span regulation by insulin-like metabolic control is analogous to mammalian longevity enhancement induced by caloric restriction, suggesting a general link between metabolism, diapause, and longevity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Visceral fat adipokine secretion is associated with systemic inflammation in obese humans.

            Although excess visceral fat is associated with noninfectious inflammation, it is not clear whether visceral fat is simply associated with or actually causes metabolic disease in humans. To evaluate the hypothesis that visceral fat promotes systemic inflammation by secreting inflammatory adipokines into the portal circulation that drains visceral fat, we determined adipokine arteriovenous concentration differences across visceral fat, by obtaining portal vein and radial artery blood samples, in 25 extremely obese subjects (mean +/- SD BMI 54.7 +/- 12.6 kg/m(2)) during gastric bypass surgery at Barnes-Jewish Hospital in St. Louis, Missouri. Mean plasma interleukin (IL)-6 concentration was approximately 50% greater in the portal vein than in the radial artery in obese subjects (P = 0.007). Portal vein IL-6 concentration correlated directly with systemic C-reactive protein concentrations (r = 0.544, P = 0.005). Mean plasma leptin concentration was approximately 20% lower in the portal vein than in the radial artery in obese subjects (P = 0.0002). Plasma tumor necrosis factor-alpha, resistin, macrophage chemoattractant protein-1, and adiponectin concentrations were similar in the portal vein and radial artery in obese subjects. These data suggest that visceral fat is an important site for IL-6 secretion and provide a potential mechanistic link between visceral fat and systemic inflammation in people with abdominal obesity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of neuronal survival by the serine-threonine protein kinase Akt.

              A signaling pathway was delineated by which insulin-like growth factor 1 (IGF-1) promotes the survival of cerebellar neurons. IGF-1 activation of phosphoinositide 3-kinase (PI3-K) triggered the activation of two protein kinases, the serine-threonine kinase Akt and the p70 ribosomal protein S6 kinase (p70(S6K)). Experiments with pharmacological inhibitors, as well as expression of wild-type and dominant-inhibitory forms of Akt, demonstrated that Akt but not p70(S6K) mediates PI3-K-dependent survival. These findings suggest that in the developing nervous system, Akt is a critical mediator of growth factor-induced neuronal survival.
                Bookmark

                Author and article information

                Contributors
                URI : http://frontiersin.org/people/u/184430
                URI : http://frontiersin.org/people/u/198347
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                06 February 2015
                2015
                : 6
                : 13
                Affiliations
                [1] 1Department of Gerontology and Geriatrics, Leiden University Medical Center , Leiden, Netherlands
                Author notes

                Edited by: Hubert Vaudry, University of Rouen, France

                Reviewed by: Catarina Oliveira, University of Coimbra, Portugal; Andrzej Bartke, Southern Illinois University School of Medicine, USA

                *Correspondence: Abimbola A. Akintola, Department of Gerontology and Geriatrics, Leiden University Medical Center, C7-124, Albinusdreef 2, Leiden 2333 ZA, Netherlands e-mail: a.a.akintola@ 123456lumc.nl

                This article was submitted to Neuroendocrine Science, a section of the journal Frontiers in Endocrinology.

                Article
                10.3389/fendo.2015.00013
                4319489
                25705204
                27f3bfea-2502-4e2c-836a-582e8aa7bf9d
                Copyright © 2015 Akintola and van Heemst.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 13 November 2014
                : 21 January 2015
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 174, Pages: 13, Words: 11613
                Categories
                Endocrinology
                Review Article

                Endocrinology & Diabetes
                insulin,insulin receptors,brain,inflammation,delayed aging,accelerated aging,longevity

                Comments

                Comment on this article