Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Relatedness decreases and reciprocity increases cooperation in Norway rats

      1 , 2 , 1
      Proceedings of the Royal Society B: Biological Sciences
      The Royal Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d7399931e167">Kin selection and reciprocity are two mechanisms underlying the evolution of cooperation, but the relative importance of kinship and reciprocity for decisions to cooperate are yet unclear for most cases of cooperation. Here, we experimentally tested the relative importance of relatedness and received cooperation for decisions to help a conspecific in wild-type Norway rats ( <i>Rattus norvegicus</i>). Test rats provided more food to non-kin than to siblings, and they generally donated more food to previously helpful social partners than to those that had refused help. The rats thus applied reciprocal cooperation rules irrespective of relatedness, highlighting the importance of reciprocal help for cooperative interactions among both related and unrelated conspecifics. </p>

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Evolutionary routes to non-kin cooperative breeding in birds

          Cooperatively breeding animals live in social groups in which some individuals help to raise the offspring of others, often at the expense of their own reproduction. Kin selection--when individuals increase their inclusive fitness by aiding genetic relatives--is a powerful explanation for the evolution of cooperative breeding, particularly because most groups consist of family members. However, recent molecular studies have revealed that many cooperative groups also contain unrelated immigrants, and the processes responsible for the formation and maintenance of non-kin coalitions are receiving increasing attention. Here, I provide the first systematic review of group structure for all 213 species of cooperatively breeding birds for which data are available. Although the majority of species (55%) nest in nuclear family groups, cooperative breeding by unrelated individuals is more common than previously recognized: 30% nest in mixed groups of relatives and non-relatives, and 15% nest primarily with non-relatives. Obligate cooperative breeders are far more likely to breed with non-kin than are facultative cooperators, indicating that when constraints on independent breeding are sufficiently severe, the direct benefits of group membership can substitute for potential kin-selected benefits. I review three patterns of dispersal that give rise to social groups with low genetic relatedness, and I discuss the selective pressures that favour the formation of such groups. Although kin selection has undoubtedly been crucial to the origin of most avian social systems, direct benefits have subsequently come to play a predominant role in some societies, allowing cooperation to persist despite low genetic relatedness.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Spontaneous prosocial choice by chimpanzees.

            The study of human and primate altruism faces an evolutionary anomaly: There is ample evidence for altruistic preferences in our own species and growing evidence in monkeys, but one of our closest relatives, the chimpanzee (Pan troglodytes), is viewed as a reluctant altruist, acting only in response to pressure and solicitation. Although chimpanzee prosocial behavior has been reported both in observational captive studies and in the wild, thus far Prosocial Choice Tests have failed to produce evidence. However, methodologies of previous Prosocial Choice Tests may have handicapped the apes unintentionally. Here we present findings of a paradigm in which chimpanzees chose between two differently colored tokens: one "selfish" token resulting in a reward for the actor only (1/0), and the other "prosocial" token rewarding both the actor and a partner (1/1). Seven female chimpanzees, each tested with three different partners, showed a significant bias for the prosocial option. Prosocial choices occurred both in response to solicitation by the partner and spontaneously without solicitation. However, directed requests and pressure by the partner reduced the actor's prosocial tendency. These results draw into question previous conclusions indicating that chimpanzees have a limited sensitivity to the needs of others and behave prosocially only in response to significant prompting.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hamilton's rule and the causes of social evolution.

              Hamilton's rule is a central theorem of inclusive fitness (kin selection) theory and predicts that social behaviour evolves under specific combinations of relatedness, benefit and cost. This review provides evidence for Hamilton's rule by presenting novel syntheses of results from two kinds of study in diverse taxa, including cooperatively breeding birds and mammals and eusocial insects. These are, first, studies that empirically parametrize Hamilton's rule in natural populations and, second, comparative phylogenetic analyses of the genetic, life-history and ecological correlates of sociality. Studies parametrizing Hamilton's rule are not rare and demonstrate quantitatively that (i) altruism (net loss of direct fitness) occurs even when sociality is facultative, (ii) in most cases, altruism is under positive selection via indirect fitness benefits that exceed direct fitness costs and (iii) social behaviour commonly generates indirect benefits by enhancing the productivity or survivorship of kin. Comparative phylogenetic analyses show that cooperative breeding and eusociality are promoted by (i) high relatedness and monogamy and, potentially, by (ii) life-history factors facilitating family structure and high benefits of helping and (iii) ecological factors generating low costs of social behaviour. Overall, the focal studies strongly confirm the predictions of Hamilton's rule regarding conditions for social evolution and their causes.
                Bookmark

                Author and article information

                Journal
                Proceedings of the Royal Society B: Biological Sciences
                Proc. R. Soc. B
                The Royal Society
                0962-8452
                1471-2954
                March 07 2018
                March 14 2018
                March 07 2018
                March 14 2018
                : 285
                : 1874
                : 20180035
                Affiliations
                [1 ]Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, 3032 Hinterkappelen, Switzerland
                [2 ]School of Psychology &amp; Neuroscience, University of St Andrews, Westburn Lane, KY16 9JP St Andrews, UK
                Article
                10.1098/rspb.2018.0035
                5879634
                29514963
                2803ccbd-ebbd-477f-9440-a0d09f6d29b1
                © 2018
                History

                Comments

                Comment on this article