7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Combating hyperthermia in acute stroke: a significant clinical concern.

      Stroke; a Journal of Cerebral Circulation
      Acute Disease, Animals, Brain Ischemia, complications, physiopathology, Cerebrovascular Disorders, therapy, Fever, epidemiology, prevention & control, Humans, Ischemic Attack, Transient, Treatment Outcome

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Moderate elevations of brain temperature, when present during or after ischemia or trauma, may markedly worsen the resulting injury. We review these provocative findings, which form the rationale for our recommendation that physicians treating acute cerebral ischemia or traumatic brain injury diligently monitor their patients for incipient fever and take prompt measures to maintain core-body temperature at normothermic levels. In standardized models of transient forebrain ischemia, intraischemic brain temperature elevations to 39 degrees C enhance and accelerate severe neuropathological alterations in vulnerable brain regions and induce damage to structures not ordinarily affected. Conversely, the blunting of even mild spontaneous postischemic hyperthermia confers neuroprotection. Mild hyperthermia is also deleterious in focal ischemia, particularly in reversible vascular occlusion. The action of otherwise neuroprotective drugs in ischemia may be nullified by mild hyperthermia. Even when delayed by 24 hours after an acute insult, moderate hyperthermia can still worsen the pathological and neurobehavioral outcome. Hyperthermia acts through several mechanisms to worsen cerebral ischemia. These include (1) enhanced release of neurotransmitters; (2) exaggerated oxygen radical production; (3) more extensive blood-brain barrier breakdown; (4) increased numbers of potentially damaging ischemic depolarizations in the focal ischemic penumbra; (5) impaired recovery of energy metabolism and enhanced inhibition of protein kinases; and (6) worsening of cytoskeletal proteolysis. Recent studies demonstrate the feasibility of direct brain temperature monitoring in patients with traumatic and ischemic injury. Moderate to severe brain temperature elevations, exceeding core-body temperature, may occur in the injured brain. Cerebral hyperthermia also occurs during rewarming after hypothermic cardiopulmonary bypass procedures. Several studies have now shown that elevated temperature is associated with poor outcome in patients with acute stroke. Finally, recent clinical trials in severe closed head injury have shown a beneficial effect of moderate therapeutic hypothermia. The acutely ischemic or traumatized brain is inordinately susceptible to the damaging influence of even modest brain temperature elevations. While controlled clinical investigations will be required to establish the therapeutic efficacy and safety of frank hypothermia in patients with acute stroke, the available evidence is sufficiently compelling to justify the recommendation, at this time, that fever be combatted assiduously in acute stroke and trauma patients, even if "minor" in degree and even when delayed in onset. We suggest that body temperature be maintained in a safe normothermic range (eg, 36.7 degrees C to 37.0 degrees C [98.0 degrees F to 98.6 degrees F]) for at least the first several days after acute stroke or head injury.

          Related collections

          Author and article information

          Comments

          Comment on this article