2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Birth Size and Rapid Infant Weight Gain—Where Does the Obesity Risk Lie?

      , , ,
      The Journal of Pediatrics
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Hyperglycemia and adverse pregnancy outcomes.

          It is controversial whether maternal hyperglycemia less severe than that in diabetes mellitus is associated with increased risks of adverse pregnancy outcomes. A total of 25,505 pregnant women at 15 centers in nine countries underwent 75-g oral glucose-tolerance testing at 24 to 32 weeks of gestation. Data remained blinded if the fasting plasma glucose level was 105 mg per deciliter (5.8 mmol per liter) or less and the 2-hour plasma glucose level was 200 mg per deciliter (11.1 mmol per liter) or less. Primary outcomes were birth weight above the 90th percentile for gestational age, primary cesarean delivery, clinically diagnosed neonatal hypoglycemia, and cord-blood serum C-peptide level above the 90th percentile. Secondary outcomes were delivery before 37 weeks of gestation, shoulder dystocia or birth injury, need for intensive neonatal care, hyperbilirubinemia, and preeclampsia. For the 23,316 participants with blinded data, we calculated adjusted odds ratios for adverse pregnancy outcomes associated with an increase in the fasting plasma glucose level of 1 SD (6.9 mg per deciliter [0.4 mmol per liter]), an increase in the 1-hour plasma glucose level of 1 SD (30.9 mg per deciliter [1.7 mmol per liter]), and an increase in the 2-hour plasma glucose level of 1 SD (23.5 mg per deciliter [1.3 mmol per liter]). For birth weight above the 90th percentile, the odds ratios were 1.38 (95% confidence interval [CI], 1.32 to 1.44), 1.46 (1.39 to 1.53), and 1.38 (1.32 to 1.44), respectively; for cord-blood serum C-peptide level above the 90th percentile, 1.55 (95% CI, 1.47 to 1.64), 1.46 (1.38 to 1.54), and 1.37 (1.30 to 1.44); for primary cesarean delivery, 1.11 (95% CI, 1.06 to 1.15), 1.10 (1.06 to 1.15), and 1.08 (1.03 to 1.12); and for neonatal hypoglycemia, 1.08 (95% CI, 0.98 to 1.19), 1.13 (1.03 to 1.26), and 1.10 (1.00 to 1.12). There were no obvious thresholds at which risks increased. Significant associations were also observed for secondary outcomes, although these tended to be weaker. Our results indicate strong, continuous associations of maternal glucose levels below those diagnostic of diabetes with increased birth weight and increased cord-blood serum C-peptide levels. Copyright 2008 Massachusetts Medical Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Predicting adult obesity from childhood obesity: a systematic review and meta-analysis.

            A systematic review and meta-analysis was performed to investigate the ability of simple measures of childhood obesity such as body mass index (BMI) to predict future obesity in adolescence and adulthood. Large cohort studies, which measured obesity both in childhood and in later adolescence or adulthood, using any recognized measure of obesity were sought. Study quality was assessed. Studies were pooled using diagnostic meta-analysis methods. Fifteen prospective cohort studies were included in the meta-analysis. BMI was the only measure of obesity reported in any study, with 200,777 participants followed up. Obese children and adolescents were around five times more likely to be obese in adulthood than those who were not obese. Around 55% of obese children go on to be obese in adolescence, around 80% of obese adolescents will still be obese in adulthood and around 70% will be obese over age 30. Therefore, action to reduce and prevent obesity in these adolescents is needed. However, 70% of obese adults were not obese in childhood or adolescence, so targeting obesity reduction solely at obese or overweight children needs to be considered carefully as this may not substantially reduce the overall burden of adult obesity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease

              miRNAs can be found in serum and other body fluids and serve as biomarkers for disease. More importantly, secreted miRNAs, especially those in extracellular vesicles (EVs) such as exosomes, may mediate paracrine and endocrine communication between different tissues and thus modulate gene expression and the function of distal cells. When impaired, these processes can lead to tissue dysfunction, aging and disease. Adipose tissue is an especially important contributor to the pool of circulating exosomal miRNAs. As a result, alterations in adipose tissue mass or function, which occur in many metabolic conditions, can lead to changes in circulating miRNAs which then function systemically. Here we review the findings that led to these conclusions and discuss how this sets the stage for new lines of investigation in which extracellular miRNAs are recognized as important mediators of intercellular communication and potential candidates for therapy of disease. In this Review, Mori et al. discuss the emerging literature of extracellular miRNAs as mediators of tissue crosstalk. They outline the ability of these miRNAs to act as effective biomarkers, as well as a new class of hormones, and thus their potential as monitors of and therapeutic agents for disease.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                The Journal of Pediatrics
                The Journal of Pediatrics
                Elsevier BV
                00223476
                March 2021
                March 2021
                : 230
                : 238-243
                Article
                10.1016/j.jpeds.2020.10.078
                33157072
                284034b0-8902-40a1-b8a8-1541b386f597
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article