54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      phot1 Inhibition of ABCB19 Primes Lateral Auxin Fluxes in the Shoot Apex Required For Phototropism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is well accepted that lateral redistribution of the phytohormone auxin underlies the bending of plant organs towards light. In monocots, photoreception occurs at the shoot tip above the region of differential growth. Despite more than a century of research, it is still unresolved how light regulates auxin distribution and where this occurs in dicots. Here, we establish a system in Arabidopsis thaliana to study hypocotyl phototropism in the absence of developmental events associated with seedling photomorphogenesis. We show that auxin redistribution to the epidermal sites of action occurs at and above the hypocotyl apex, not at the elongation zone. Within this region, we identify the auxin efflux transporter ATP-BINDING CASSETTE B19 (ABCB19) as a substrate target for the photoreceptor kinase PHOTOTROPIN 1 (phot1). Heterologous expression and physiological analyses indicate that phosphorylation of ABCB19 by phot1 inhibits its efflux activity, thereby increasing auxin levels in and above the hypocotyl apex to halt vertical growth and prime lateral fluxes that are subsequently channeled to the elongation zone by PIN-FORMED 3 (PIN3). Together, these results provide new insights into the roles of ABCB19 and PIN3 in establishing phototropic curvatures and demonstrate that the proximity of light perception and differential phototropic growth is conserved in angiosperms.

          Author Summary

          Plants depend on sunlight for photosynthesis and adapt their growth to optimize light capture. Phototropism, the reorientation of growth towards light, is one important adaptive response. Modern studies of phototropism began with experiments in monocotyledonous grasses by Charles Darwin and led ultimately to the discovery of the plant growth hormone auxin, establishing the concept that light perception at the shoot apex triggers differential bending in the tissues below. In the past two decades, molecular-genetic analysis in the model flowering plant Arabidopsis thaliana has identified the principle photoreceptor for phototropism, phot1, as well as the major auxin transporters. Despite extensive efforts, how the photoreceptor regulates auxin transport so as to establish differential growth is still poorly understood, as is whether this process is conserved between monocots and dicots. Here, we introduce a new approach to the study of Arabidopsis phototropism in the absence of developmental events associated with seedling photomorphogenesis. In doing so, we show that the proximity of light perception and differential growth is conserved between monocots and dicots: in both plant types, differential growth is a consequence of lateral auxin movements across the shoot apex. Moreover, we identify two auxin transporters, PIN3 and ABCB19, that contribute to these movements, the latter serving to prime lateral auxin fluxes in the shoot apex. ABCB19 function is regulated by phot1, identifying it as a substrate for this class of photoreceptor kinase.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis.

          Long-standing models propose that plant growth responses to light or gravity are mediated by asymmetric distribution of the phytohormone auxin. Physiological studies implicated a specific transport system that relocates auxin laterally, thereby effecting differential growth; however, neither the molecular components of this system nor the cellular mechanism of auxin redistribution on light or gravity perception have been identified. Here, we show that auxin accumulates asymmetrically during differential growth in an efflux-dependent manner. Mutations in the Arabidopsis gene PIN3, a regulator of auxin efflux, alter differential growth. PIN3 is expressed in gravity-sensing tissues, with PIN3 protein accumulating predominantly at the lateral cell surface. PIN3 localizes to the plasma membrane and to vesicles that cycle in an actin-dependent manner. In the root columella, PIN3 is positioned symmetrically at the plasma membrane but rapidly relocalizes laterally on gravity stimulation. Our data indicate that PIN3 is a component of the lateral auxin transport system regulating tropic growth. In addition, actin-dependent relocalization of PIN3 in response to gravity provides a mechanism for redirecting auxin flux to trigger asymmetric growth.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Auxin transport routes in plant development.

            The differential distribution of the plant signaling molecule auxin is required for many aspects of plant development. Local auxin maxima and gradients arise as a result of local auxin metabolism and, predominantly, from directional cell-to-cell transport. In this primer, we discuss how the coordinated activity of several auxin influx and efflux systems, which transport auxin across the plasma membrane, mediates directional auxin flow. This activity crucially contributes to the correct setting of developmental cues in embryogenesis, organogenesis, vascular tissue formation and directional growth in response to environmental stimuli.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phototropin blue-light receptors.

              Phototropins are blue-light receptors controlling a range of responses that serve to optimize the photosynthetic efficiency of plants. These include phototropism, light-induced stomatal opening, and chloroplast movements in response to changes in light intensity. Since the isolation of the Arabidopsis PHOT1 gene in 1997, phototropins have been identified in ferns and mosses where their physiological functions appear to be conserved. Arabidopsis contains two phototropins, phot1 and phot2, that exhibit overlapping functions in addition to having unique physiological roles. Phototropins are light-activated serine/threonine protein kinases. Light sensing by the phototropins is mediated by a repeated motif at the N-terminal region of the protein known as the LOV domain. Photoexcitation of the LOV domain results in receptor autophosphorylation and an initiation of phototropin signaling. Here we summarize the photochemical and biochemical events underlying phototropin activation in addition to the current knowledge of the molecular mechanisms associated with photoreceptor signaling.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                June 2011
                June 2011
                7 June 2011
                : 9
                : 6
                : e1001076
                Affiliations
                [1 ]Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
                [2 ]Department of Horticulture, Purdue University, West Lafayette, Indiana, United States of America
                [3 ]Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
                Cambridge University, United Kingdom
                Author notes

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: JMC WAP ASM. Performed the experiments: JMC HY GR SS CET JL BT ME EK ORL JA ASM. Analyzed the data: JMC WAP ASM. Wrote the paper: JMC ASM.

                Article
                PBIOLOGY-D-11-00690
                10.1371/journal.pbio.1001076
                3110179
                21666806
                2874bc1c-5fca-4a1c-ae5f-1524da0a22ca
                Christie et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 16 February 2011
                : 26 April 2011
                Page count
                Pages: 12
                Categories
                Research Article
                Biology

                Life sciences
                Life sciences

                Comments

                Comment on this article