Meiotic recombination events are initiated by DNA double-strand breaks (DSBs) created by the topoisomerase-like protein, Spo11. Similar to type-II topoisomerases, Spo11 becomes covalently linked to the 5' ends generated on each side of the DSB. Whilst Spo11-oligos - the product of nucleolytic removal by Mre11 - have been detected in a number of biological systems, the lifetime of the covalent Spo11-DSB precursor has not been systematically determined and may be subject to alternative processing reactions. Here we explore the activity of human Tyrosyl DNA Phosphodiesterase, TDP2, on Spo11-DSBs isolated from S. cerevisiae cells. We demonstrate that TDP2 can remove Spo11 from natural ssDNA-oligos, and dsDNA ends even when in the presence of excess competitor genomic DNA. Interestingly, TDP2-processed Spo11-DSBs are refractory to resection by Exo1, suggesting that ssDNA generated by Mre11 may be essential in vivo to facilitate resection-dependent HR at Spo11-DSBs even if TDP2 were active. Moreover, although TDP2 can remove Spo11 peptides in vitro, TDP2 was unable to remove Spo11 in vivo - unlike during the repair of topoisomerase-induced DNA lesions. These results suggest that Spo11-DNA, but not topoisomerase-DNA cleavage complexes, are inaccessible to the TDP2 enzyme, perhaps due to occlusion by higher order protein complexes resident at sites of meiotic recombination.