80
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ultra-processed food intake and risk of cardiovascular disease: prospective cohort study (NutriNet-Santé)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          To assess the prospective associations between consumption of ultra-processed foods and risk of cardiovascular diseases.

          Design

          Population based cohort study.

          Setting

          NutriNet-Santé cohort, France 2009-18.

          Participants

          105 159 participants aged at least 18 years. Dietary intakes were collected using repeated 24 hour dietary records (5.7 for each participant on average), designed to register participants’ usual consumption of 3300 food items. These foods were categorised using the NOVA classification according to degree of processing.

          Main outcome measures

          Associations between intake of ultra-processed food and overall risk of cardiovascular, coronary heart, and cerebrovascular diseases assessed by multivariable Cox proportional hazard models adjusted for known risk factors.

          Results

          During a median follow-up of 5.2 years, intake of ultra-processed food was associated with a higher risk of overall cardiovascular disease (1409 cases; hazard ratio for an absolute increment of 10 in the percentage of ultra-processed foods in the diet 1.12 (95% confidence interval 1.05 to 1.20); P<0.001, 518 208 person years, incidence rates in high consumers of ultra-processed foods (fourth quarter) 277 per 100 000 person years, and in low consumers (first quarter) 242 per 100 000 person years), coronary heart disease risk (665 cases; hazard ratio 1.13 (1.02 to 1.24); P=0.02, 520 319 person years, incidence rates 124 and 109 per 100 000 person years, in the high and low consumers, respectively), and cerebrovascular disease risk (829 cases; hazard ratio 1.11 (1.01 to 1.21); P=0.02, 520 023 person years, incidence rates 163 and 144 per 100 000 person years, in high and low consumers, respectively). These results remained statistically significant after adjustment for several markers of the nutritional quality of the diet (saturated fatty acids, sodium and sugar intakes, dietary fibre, or a healthy dietary pattern derived by principal component analysis) and after a large range of sensitivity analyses.

          Conclusions

          In this large observational prospective study, higher consumption of ultra-processed foods was associated with higher risks of cardiovascular, coronary heart, and cerebrovascular diseases. These results need to be confirmed in other populations and settings, and causality remains to be established. Various factors in processing, such as nutritional composition of the final product, additives, contact materials, and neoformed contaminants might play a role in these associations, and further studies are needed to understand better the relative contributions. Meanwhile, public health authorities in several countries have recently started to promote unprocessed or minimally processed foods and to recommend limiting the consumption of ultra-processed foods.

          Study registration

          ClinicalTrials.gov NCT03335644.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Association of Body Mass Index With Lifetime Risk of Cardiovascular Disease and Compression of Morbidity

          This population-based study calculates lifetime risk estimates for incident cardiovascular disease and subtypes of cardiovascular disease and estimates years lived with and without cardiovascular disease by weight status. Question What is the association of body mass index with cardiovascular disease (CVD) morbidity and mortality? Findings In this population-based study, overweight and obesity were associated with significantly increased risk for CVD. Obesity was associated with shorter longevity and a greater proportion of life lived with CVD; overweight was associated with similar longevity as normal weight but at the expense of a greater proportion of life lived with CVD. Meaning These results provide critical perspective on CVD associated with overweight and obesity and challenge both the obesity paradox as well as the view that overweight is associated with greater longevity. Importance Prior studies have demonstrated lower all-cause mortality in individuals who are overweight compared with those with normal body mass index (BMI), but whether this may come at the cost of greater burden of cardiovascular disease (CVD) is unknown. Objective To calculate lifetime risk estimates of incident CVD and subtypes of CVD and to estimate years lived with and without CVD by weight status. Design, Setting, and Participants In this population-based study, we used pooled individual-level data from adults (baseline age, 20-39, 40-59, and 60-79 years) across 10 large US prospective cohorts, with 3.2 million person-years of follow-up from 1964 to 2015. All participants were free of clinical CVD at baseline with available BMI index and CVD outcomes data. Data were analyzed from October 2016 to July 2017. Exposures World Health Organization–standardized BMI categories. Main Outcomes and Measures Total CVD and CVD subtype, including fatal and nonfatal coronary heart disease, stroke, congestive heart failure, and other CVD deaths. Heights and weights were measured directly by investigators in each study, and BMI was calculated as weight in kilograms divided by height in meters squared. We performed (1) modified Kaplan-Meier analysis to estimate lifetime risks, (2) adjusted competing Cox models to estimate joint cumulative risks for CVD or noncardiovascular death, and (3) the Irwin restricted mean to estimate years lived free of and with CVD. Results Of the 190 672 in-person examinations included in this study, the mean (SD) age was 46.0 (15.0) years for men and 58.7 (12.9) years for women, and 140 835 patients (73.9%) were female. Compared with individuals with a normal BMI (defined as a BMI of 18.5 to 24.9), lifetime risks for incident CVD were higher in middle-aged adults in the overweight and obese groups. Compared with normal weight, among middle-aged men and women, competing hazard ratios for incident CVD were 1.21 (95% CI, 1.14-1.28) and 1.32 (95% CI, 1.24-1.40), respectively, for overweight (BMI, 25.0-29.9), 1.67 (95% CI, 1.55-1.79) and 1.85 (95% CI, 1.72-1.99) for obesity (BMI, 30.0-39.9), and 3.14 (95% CI, 2.48-3.97) and 2.53 (95% CI, 2.20-2.91) for morbid obesity (BMI, ≥40.0). Higher BMI had the strongest association with incident heart failure among CVD subtypes. Average years lived with CVD were longer for middle-aged adults in the overweight and obese groups compared with adults in the normal BMI group. Similar patterns were observed in younger and older adults. Conclusions and Relevance In this study, obesity was associated with shorter longevity and significantly increased risk of cardiovascular morbidity and mortality compared with normal BMI. Despite similar longevity compared with normal BMI, overweight was associated with significantly increased risk of developing CVD at an earlier age, resulting in a greater proportion of life lived with CVD morbidity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Consumption of ultra-processed foods predicts diet quality in Canada.

            This study describes food consumption patterns in Canada according to the types of food processing using the Nova classification and investigates the association between consumption of ultra-processed foods and the nutrient profile of the diet. Dietary intakes of 33,694 individuals from the 2004 Canadian Community Health Survey aged 2 years and above were analyzed. Food and drinks were classified using Nova into unprocessed or minimally processed foods, processed culinary ingredients, processed foods and ultra-processed foods. Average consumption (total daily energy intake) and relative consumption (% of total energy intake) provided by each of the food groups were calculated. Consumption of ultra-processed foods according to sex, age, education, residential location and relative family revenue was assessed. Mean nutrient content of ultra-processed foods and non-ultra-processed foods were compared, and the average nutrient content of the overall diet across quintiles of dietary share of ultra-processed foods was measured. In 2004, 48% of calories consumed by Canadians came from ultra-processed foods. Consumption of such foods was high amongst all socioeconomic groups, and particularly in children and adolescents. As a group, ultra-processed foods were grossly nutritionally inferior to non-ultra-processed foods. After adjusting for covariates, a significant and positive relationship was found between the dietary share of ultra-processed foods and the content in carbohydrates, free sugars, total and saturated fats and energy density, while an inverse relationship was observed with the dietary content in protein, fiber, vitamins A, C, D, B6 and B12, niacin, thiamine, riboflavin, as well as zinc, iron, magnesium, calcium, phosphorus and potassium. Lowering the dietary share of ultra-processed foods and raising consumption of hand-made meals from unprocessed or minimally processed foods would substantially improve the diet quality of Canadian.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Ultra-Processed Food Products and Obesity in Brazilian Households (2008–2009)

              Background Production and consumption of industrially processed food and drink products have risen in parallel with the global increase in overweight and obesity and related chronic non-communicable diseases. The objective of this study was to analyze the relationship between household availability of processed and ultra-processed products and the prevalence of excess weight (overweight plus obesity) and obesity in Brazil. Methods The study was based on data from the 2008–2009 Household Budget Survey involving a probabilistic sample of 55,970 Brazilian households. The units of study were household aggregates (strata), geographically and socioeconomically homogeneous. Multiple linear regression models were used to assess the relationship between the availability of processed and ultra-processed products and the average of Body Mass Index (BMI) and the percentage of individuals with excess weight and obesity in the strata, controlling for potential confounders (socio-demographic characteristics, percentage of expenditure on eating out of home, and dietary energy other than that provided by processed and ultra-processed products). Predictive values for prevalence of excess weight and obesity were estimated according to quartiles of the household availability of dietary energy from processed and ultra-processed products. Results The mean contribution of processed and ultra-processed products to total dietary energy availability ranged from 15.4% (lower quartile) to 39.4% (upper quartile). Adjusted linear regression coefficients indicated that household availability of ultra-processed products was positively associated with both the average BMI and the prevalence of excess weight and obesity, whereas processed products were not associated with these outcomes. In addition, people in the upper quartile of household consumption of ultra-processed products, compared with those in the lower quartile, were 37% more likely to be obese. Conclusion Greater household availability of ultra-processed food products in Brazil is positively and independently associated with higher prevalence of excess weight and obesity in all age groups in this cross-sectional study.
                Bookmark

                Author and article information

                Contributors
                Role: PhD candidate in epidemiology
                Role: assistant professor of nutritional epidemiology
                Role: senior researcher in nutritional epidemiology
                Role: junior researcher in nutritional epidemiology
                Role: senior researcher in nutritional epidemiology
                Role: PhD candidate in epidemiology
                Role: PhD candidate in epidemiology
                Role: postdoctoral researcher in epidemiology
                Role: professor of nutrition and public health
                Role: senior researcher in nutritional epidemiology
                Role: professor of nutrition and public health
                Role: assistant professor of nutrition and public health
                Role: senior researcher in nutritional epidemiology, and head of the EREN Team
                Journal
                BMJ
                BMJ
                BMJ-UK
                bmj
                The BMJ
                BMJ Publishing Group Ltd.
                0959-8138
                1756-1833
                2019
                29 May 2019
                : 365
                : l1451
                Affiliations
                [1 ]Sorbonne Paris Cité Epidemiology and Statistics Research Center (CRESS), Inserm U1153, Inra U1125, Cnam, University of Paris 13, Nutritional Epidemiology Research Team (EREN), Bobigny, France
                [2 ]MOISA, University of Montpellier, INRA, CIRAD, CIHEAM-IAMM, Montpellier SupAgro, Montpellier, France
                [3 ]Public Health Department, Avicenne Hospital, AP-HP, Bobigny, France
                [4 ]Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
                Author notes
                Correspondence to: B Srour b.srour@ 123456eren.smbh.univ-paris13.fr (or @bernardsrour on Twitter)
                Author information
                http://orcid.org/0000-0002-1277-3380
                Article
                srob046135
                10.1136/bmj.l1451
                6538975
                31142457
                28ca645c-e540-4494-81af-01eb4ac4c699
                Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions

                This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 19 March 2019
                Categories
                Research

                Medicine
                Medicine

                Comments

                Comment on this article