25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptomic analysis of the venom gland of the red-headed krait ( Bungarus flaviceps) using expressed sequence tags

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The Red-headed krait ( Bungarus flaviceps, Squamata: Serpentes: Elapidae) is a medically important venomous snake that inhabits South-East Asia. Although the venoms of most species of the snake genus Bungarus have been well characterized, a detailed compositional analysis of B. flaviceps is currently lacking.

          Results

          Here, we have sequenced 845 expressed sequence tags (ESTs) from the venom gland of a B. flaviceps. Of the transcripts, 74.8% were putative toxins; 20.6% were cellular; and 4.6% were unknown. The main venom protein families identified were three-finger toxins (3FTxs), Kunitz-type serine protease inhibitors (including chain B of β-bungarotoxin), phospholipase A 2 (including chain A of β-bungarotoxin), natriuretic peptide (NP), CRISPs, and C-type lectin.

          Conclusion

          The 3FTxs were found to be the major component of the venom (39%). We found eight groups of unique 3FTxs and most of them were different from the well-characterized 3FTxs. We found three groups of Kunitz-type serine protease inhibitors (SPIs); one group was comparable to the classical SPIs and the other two groups to chain B of β-bungarotoxins (with or without the extra cysteine) based on sequence identity. The latter group may be functional equivalents of dendrotoxins in Bungarus venoms. The natriuretic peptide (NP) found is the first NP for any Asian elapid, and distantly related to Australian elapid NPs. Our study identifies several unique toxins in B. flaviceps venom, which may help in understanding the evolution of venom toxins and the pathophysiological symptoms induced after envenomation.

          Related collections

          Most cited references101

          • Record: found
          • Abstract: found
          • Article: not found

          A new natriuretic peptide in porcine brain.

          Atrial natriuretic peptide (ANP), a hormone secreted from mammalian atria, regulates the homoeostatic balance of body fluid and blood pressure. ANP-like immunoreactivity is also present in the brain, suggesting that the peptide functions as a neuropeptide. We report here identification in porcine brain of a novel peptide of 26 amino-acid residues, eliciting a pharmacological spectrum very similar to that of ANP, such as natriuretic-diuretic, hypotensive and chick rectum relaxant activities. The complete amino-acid sequence determined for the peptide is remarkably similar to but definitely distinct from the known sequence of ANP, indicating that the genes for the two are distinct. Thus, we have designated the peptide 'brain natriuretic peptide' (BNP). The occurrence of BNP with ANP in mammalian brain suggests the possibility that the physiological functions so far thought to be mediated by ANP may be regulated through a dual mechanism involving both ANP and BNP.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            From genome to "venome": molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins.

            This study analyzed the origin and evolution of snake venom proteome by means of phylogenetic analysis of the amino acid sequences of the toxins and related nonvenom proteins. The snake toxins were shown to have arisen from recruitment events of genes from within the following protein families: acetylcholinesterase, ADAM (disintegrin/metalloproteinase), AVIT, complement C3, crotasin/beta defensin, cystatin, endothelin, factor V, factor X, kallikrein, kunitz-type proteinase inhibitor, LYNX/SLUR, L-amino oxidase, lectin, natriuretic peptide, betanerve growth factor, phospholipase A(2), SPla/Ryanodine, vascular endothelial growth factor, and whey acidic protein/secretory leukoproteinase inhibitor. Toxin recruitment events were found to have occurred at least 24 times in the evolution of snake venom. Two of these toxin derivations (CRISP and kallikrein toxins) appear to have been actually the result of modifications of existing salivary proteins rather than gene recruitment events. One snake toxin type, the waglerin peptides from Tropidolaemus wagleri (Wagler's Viper), did not have a match with known proteins and may be derived from a uniquely reptilian peptide. All of the snake toxin types still possess the bioactivity of the ancestral proteins in at least some of the toxin isoforms. However, this study revealed that the toxin types, where the ancestral protein was extensively cysteine cross-linked, were the ones that flourished into functionally diverse, novel toxin multigene families.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular evolution and phylogeny of elapid snake venom three-finger toxins.

              Animal venom components are of considerable interest to researchers across a wide variety of disciplines, including molecular biology, biochemistry, medicine, and evolutionary genetics. The three-finger family of snake venom peptides is a particularly interesting and biochemically complex group of venom peptides, because they are encoded by a large multigene family and display a diverse array of functional activities. In addition, understanding how this complex and highly varied multigene family evolved is an interesting question to researchers investigating the biochemical diversity of these peptides and their impact on human health. Therefore, the purpose of our study was to investigate the long-term evolutionary patterns exhibited by these snake venom toxins to understand the mechanisms by which they diversified into a large, biochemically diverse, multigene family. Our results show a much greater diversity of family members than was previously known, including a number of subfamilies that did not fall within any previously identified groups with characterized activities. In addition, we found that the long-term evolutionary processes that gave rise to the diversity of three-finger toxins are consistent with the birth-and-death model of multigene family evolution. It is anticipated that this "three-finger toxin toolkit" will prove to be useful in providing a clearer picture of the diversity of investigational ligands or potential therapeutics available within this important family.
                Bookmark

                Author and article information

                Journal
                BMC Mol Biol
                BMC Molecular Biology
                BioMed Central
                1471-2199
                2010
                29 March 2010
                : 11
                : 24
                Affiliations
                [1 ]Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore 117546, Singapore
                [2 ]Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur-784 028, Assam, India
                [3 ]Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
                [4 ]Department of Biochemistry and Molecular Biology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298-0614, USA
                Article
                1471-2199-11-24
                10.1186/1471-2199-11-24
                2861064
                20350308
                297f032e-f5dd-4b52-8408-dddfcf713b5e
                Copyright ©2010 Siang et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 4 December 2009
                : 29 March 2010
                Categories
                Research article

                Molecular biology
                Molecular biology

                Comments

                Comment on this article