5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Drosophila Glue: A Promising Model for Bioadhesion

      ,
      Insects
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The glue produced by Drosophila larvae to attach themselves to a substrate for several days and resist predation until the end of metamorphosis represents an attractive model to develop new adhesives for dry environments. The adhesive properties of this interesting material have been investigated recently, and it was found that it binds as well as strongly adhesive commercial tapes to various types of substrates. This glue hardens rapidly after excretion and is made of several proteins. In D. melanogaster, eight glue proteins have been identified: four are long glycosylated mucoproteins containing repeats rich in prolines, serines and threonines, and four others are shorter proteins rich in cysteines. This protein mix is produced by the salivary glands through a complex packaging process that is starting to be elucidated. Drosophila species have adapted to stick to various substrates in diverse environmental conditions and glue genes appear to evolve rapidly in terms of gene number, number of repeats and sequence of the repeat motifs. Interestingly, besides its adhesive properties, the glue may also have antimicrobial activities. We discuss future perspectives and avenues of research for the development of new bioadhesives mimicking Drosophila fly glue.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          TimeTree: A Resource for Timelines, Timetrees, and Divergence Times.

          Evolutionary information on species divergence times is fundamental to studies of biodiversity, development, and disease. Molecular dating has enhanced our understanding of the temporal patterns of species divergences over the last five decades, and the number of studies is increasing quickly due to an exponential growth in the available collection of molecular sequences from diverse species and large number of genes. Our TimeTree resource is a public knowledge-base with the primary focus to make available all species divergence times derived using molecular sequence data to scientists, educators, and the general public in a consistent and accessible format. Here, we report a major expansion of the TimeTree resource, which more than triples the number of species (>97,000) and more than triples the number of studies assembled (>3,000). Furthermore, scientists can access not only the divergence time between two species or higher taxa, but also a timetree of a group of species and a timeline that traces a species' evolution through time. The new timetree and timeline visualizations are integrated with display of events on earth and environmental history over geological time, which will lead to broader and better understanding of the interplay of the change in the biosphere with the diversity of species on Earth. The next generation TimeTree resource is publicly available online at http://www.timetree.org.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Progress and potential in organoid research

            Tissue and organ biology are very challenging to study in mammals, and progress can be hindered, particularly in humans, by sample accessibility and ethical concerns. However, advances in stem cell culture have made it possible to derive in vitro 3D tissues called organoids, which capture some of the key multicellular, anatomical and even functional hallmarks of real organs at the micrometre to millimetre scale. Recent studies have demonstrated that organoids can be used to model organ development and disease and have a wide range of applications in basic research, drug discovery and regenerative medicine. Researchers are now beginning to take inspiration from other fields, such as bioengineering, to generate organoids that are more physiologically relevant and more amenable to real-life applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Organs-on-chips: into the next decade

              Organs-on-chips (OoCs), also known as microphysiological systems or 'tissue chips' (the terms are synonymous), have attracted substantial interest in recent years owing to their potential to be informative at multiple stages of the drug discovery and development process. These innovative devices could provide insights into normal human organ function and disease pathophysiology, as well as more accurately predict the safety and efficacy of investigational drugs in humans. Therefore, they are likely to become useful additions to traditional preclinical cell culture methods and in vivo animal studies in the near term, and in some cases replacements for them in the longer term. In the past decade, the OoC field has seen dramatic advances in the sophistication of biology and engineering, in the demonstration of physiological relevance and in the range of applications. These advances have also revealed new challenges and opportunities, and expertise from multiple biomedical and engineering fields will be needed to fully realize the promise of OoCs for fundamental and translational applications. This Review provides a snapshot of this fast-evolving technology, discusses current applications and caveats for their implementation, and offers suggestions for directions in the next decade.
                Bookmark

                Author and article information

                Contributors
                Journal
                Insects
                Insects
                MDPI AG
                2075-4450
                August 2022
                August 16 2022
                : 13
                : 8
                : 734
                Article
                10.3390/insects13080734
                36005360
                29adfb9c-c1bd-4783-948c-5817bfbd2c94
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article