6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clinical Evidence for Targeting NAD Therapeutically

      review-article
      1 , * , 2 , 3
      Pharmaceuticals
      MDPI
      nicotinamide adenine dinucleotide, NAD, pharmacology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nicotinamide adenine dinucleotide (NAD) pharmacology is a promising class of treatments for age-related conditions that are likely to have a favorable side effect profile for human use, given the widespread use of the NAD precursor vitamin B3 supplements. However, despite several decades of active investigation and numerous possible biochemical mechanisms of action suggested, only a small number of randomized and adequately powered clinical trials of NAD upregulation as a therapeutic strategy have taken place. We conducted a systematic review of the literature, following the PRISMA guidelines, in an attempt to determine whether or not the human clinical trials performed to date support the potential benefits of NAD supplementation in a range of skin, metabolic and age-related conditions. In addition, we sought medical indications that have yielded the most promising results in the limited studies to date. We conclude that promising, yet still speculative, results have been reported for the treatment of psoriasis and enhancement of skeletal muscle activity. However, further trials are required to determine the optimal method of raising NAD levels, identifying the target conditions, and comparisons to the present standard of care for these conditions. Lastly, pharmacological methods that increase NAD levels should also be directly compared to physiological means of raising NAD levels, such as exercise programs and dietary interventions that are tailored to older individuals, and which may be more effective.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: found

          The Hallmarks of Aging

          Aging is characterized by a progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. This deterioration is the primary risk factor for major human pathologies, including cancer, diabetes, cardiovascular disorders, and neurodegenerative diseases. Aging research has experienced an unprecedented advance over recent years, particularly with the discovery that the rate of aging is controlled, at least to some extent, by genetic pathways and biochemical processes conserved in evolution. This Review enumerates nine tentative hallmarks that represent common denominators of aging in different organisms, with special emphasis on mammalian aging. These hallmarks are: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. A major challenge is to dissect the interconnectedness between the candidate hallmarks and their relative contributions to aging, with the final goal of identifying pharmaceutical targets to improve human health during aging, with minimal side effects. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The senescence-associated secretory phenotype: the dark side of tumor suppression.

            Cellular senescence is a tumor-suppressive mechanism that permanently arrests cells at risk for malignant transformation. However, accumulating evidence shows that senescent cells can have deleterious effects on the tissue microenvironment. The most significant of these effects is the acquisition of a senescence-associated secretory phenotype (SASP) that turns senescent fibroblasts into proinflammatory cells that have the ability to promote tumor progression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NAD+ in aging, metabolism, and neurodegeneration

              Nicotinamide adenine dinucleotide (NAD(+)) is a coenzyme found in all living cells. It serves both as a critical coenzyme for enzymes that fuel reduction-oxidation reactions, carrying electrons from one reaction to another, and as a cosubstrate for other enzymes such as the sirtuins and poly(adenosine diphosphate-ribose) polymerases. Cellular NAD(+) concentrations change during aging, and modulation of NAD(+) usage or production can prolong both health span and life span. Here we review factors that regulate NAD(+) and discuss how supplementation with NAD(+) precursors may represent a new therapeutic opportunity for aging and its associated disorders, particularly neurodegenerative diseases.
                Bookmark

                Author and article information

                Journal
                Pharmaceuticals (Basel)
                Pharmaceuticals (Basel)
                pharmaceuticals
                Pharmaceuticals
                MDPI
                1424-8247
                15 September 2020
                September 2020
                : 13
                : 9
                : 247
                Affiliations
                [1 ]Health Longevity Performance Optimisation Institute, Cambridge CB22 5NE, UK
                [2 ]Fight Aging!, 4736 Onondaga Blvd, PMB 179, Syracuse, NY 13219, USA; reason@ 123456fightaging.org
                [3 ]Buck Institute for Research on Aging, Novato, CA 94945, USA; everdin@ 123456buckinstitute.org
                Author notes
                [* ]Correspondence: drdina@ 123456hlpo.life ; Tel.: +44-7818673663
                Article
                pharmaceuticals-13-00247
                10.3390/ph13090247
                7558103
                32942582
                29f34fb6-633b-4fdd-ba50-ae87da773a92
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 18 August 2020
                : 10 September 2020
                Categories
                Review

                nicotinamide adenine dinucleotide,nad,pharmacology
                nicotinamide adenine dinucleotide, nad, pharmacology

                Comments

                Comment on this article