2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The lens in diabetes.

      Eye
      Adolescent, Adult, Aged, Aged, 80 and over, Aging, physiology, Animals, Cataract, physiopathology, Child, Diabetes Mellitus, Diabetes Mellitus, Experimental, Female, Humans, Incidence, Lens, Crystalline, Male, Middle Aged, Rats

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This paper reviews the changes which occur in the human lens in diabetes. They include refractive changes and cataract and age-related increases in thickness, curvatures, light scattering, autofluorescence and yellowing. The incidence of cataract is greatly increased over the age of 50 years, slightly more so in women, compared with non-diabetics. Experimental models of sugar cataract provide some evidence for the mechanism of the uncommon, but morphologically distinct, juvenile form of human diabetic cataract, where an osmotic mechanism due to sugar alcohol accumulation has been thoroughly studied in diabetic or galactose-fed rats. The discrepancy between the ready accumulation of sugar alcohol in the lens in model systems and the very slow kinetics of aldose reductase (AR) has not been satisfactorily explained and suggests that the mechanism of polyol formation is not yet fully understood in mammalian systems. The activity of AR in the human lens lies mainly in the epithelium and there appears to be a marginal expectation that sufficient sorbitol accumulates in cortical lens fibres to explain the lens swelling and cataract on an osmotic basis. This is even more so in the cataracts of adult diabetics, which resemble those of age-related non-diabetic cataracts in appearance. The very low levels of sorbitol in adult diabetic lenses make an osmotic mechanism for the increased risk of cataract even less likely. Other mechanisms, including glycation and oxidative stress, are discussed. The occurrence of cataract is a predictor for increased mortality in the diabetic.

          Related collections

          Author and article information

          Comments

          Comment on this article