6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Comparison of the hemodynamics in 6mm and 4-7 mm hemodialysis grafts by means of CFD.

      Journal of Biomechanics
      Anastomosis, Surgical, methods, Animals, Arteries, physiopathology, Arteriovenous Anastomosis, Blood Flow Velocity, Blood Pressure, Blood Vessel Prosthesis, Brachial Artery, surgery, Computer Simulation, Equipment Failure Analysis, Humans, Models, Cardiovascular, Renal Dialysis, Veins

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of our study is to investigate with computational fluid dynamics (CFD) whether different arterial anastomotic geometries result in a different hemodynamics at the arterial (AA) and venous anastomosis (VA) of hemodialysis vascular access grafts. We have studied a 6mm graft (CD) and a 4-7 mm graft (TG). A validated three-dimensional CFD model is developed to simulate flow in the two graft types. Only the arterial anastomosis (AA) geometry differs. The boundary conditions applied are a periodic velocity signal at the arterial inlet and a periodic pressure wave at the venous outlet. Flow rate is set to 1,000 ml/min. The time dependent Navier-Stokes equations are solved. Wall shear stress (WSS), wall shear stress gradient (WSSG) and pressure gradient (PG) are calculated. Anastomotic flow is asymmetric although the anastomosis geometry is symmetric. The hemodynamic parameters, WSS, WSSG and PG, values at the suture line of the arterial anastomosis of the TG are at least twice as much as in the CD. Comparing the parameters at the two AA indicate that little flow rate increase introduces the risk of hemolysis in the TG whereas the CD is completely free of hemolysis. The hemodynamic parameter values at the venous anastomosis of the CD are 24 till 35% higher compared to the values of the TG. WSS values (> 3 Pa) in the VA are in the critical range for stenosis development in both graft geometries. The zones where the parameters reach extreme values correspond to the locations where intimal hyperplasia formation is reported in literature. In all anastomoses, the hemodynamic parameter levels are in the range where leucocytes and platelets get activated. Our simulations confirm clinical results where TG did not show a better outcome when compared to the CD.

          Related collections

          Author and article information

          Comments

          Comment on this article