7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Contribution of Uptake and Efflux Transporters to Oral Pharmacokinetics of Furosemide

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Furosemide is a widely used diuretic for treating excessive fluid accumulation caused by disease conditions like heart failure and liver cirrhosis. Furosemide tablet formulation exhibits variable pharmacokinetics (PK) with bioavailability ranging from 10 to almost 100%. To explain the variable absorption, we integrated the physicochemical, in vitro dissolution, permeability, distribution, and the elimination parameters of furosemide in a physiologically-based pharmacokinetic (PBPK) model. Although the intravenous PBPK model reasonably described the observed in vivo PK data, the reported low passive permeability failed to capture the observed data after oral administration. To mechanistically justify this discrepancy, we hypothesized that transporter-mediated uptake contributes to the oral absorption of furosemide in conjunction with passive permeability. Our in vitro results confirmed that furosemide is a substrate of intestinal breast cancer resistance protein (BCRP), multidrug resistance-associated protein 4 (MRP4), and organic anion transporting polypeptide 2B1 (OATP2B1), but it is not a substrate of P-glycoprotein (P-gp) and MRP2. We then estimated the net transporter-mediated intestinal uptake and integrated it into the PBPK model under both fasting and fed conditions. Our in vitro data and PBPK model suggest that the absorption of furosemide is permeability-limited, and OATP2B1 and MRP4 are important for its permeability across intestinal membrane. Further, as furosemide has been proposed as a probe substrate of renal organic anion transporters (OATs) for assessing clinical drug–drug interactions (DDIs) during drug development, the confounding effects of intestinal transporters identified in this study on furosemide PK should be considered in the clinical transporter DDI studies.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions.

          A key component of whole body physiologically based pharmacokinetic (WBPBPK) models is the tissue-to-plasma water partition coefficients (Kpu's). The predictability of Kpu values using mechanistically derived equations has been investigated for 7 very weak bases, 20 acids, 4 neutral drugs and 8 zwitterions in rat adipose, bone, brain, gut, heart, kidney, liver, lung, muscle, pancreas, skin, spleen and thymus. These equations incorporate expressions for dissolution in tissue water and, partitioning into neutral lipids and neutral phospholipids. Additionally, associations with acidic phospholipids were incorporated for zwitterions with a highly basic functionality, or extracellular proteins for the other compound classes. The affinity for these cellular constituents was determined from blood cell data or plasma protein binding, respectively. These equations assume drugs are passively distributed and that processes are nonsaturating. Resultant Kpu predictions were more accurate when compared to published equations, with 84% as opposed to 61% of the predicted values agreeing with experimental values to within a factor of 3. This improvement was largely due to the incorporation of distribution processes related to drug ionisation, an issue that is not addressed in earlier equations. Such advancements in parameter prediction will assist WBPBPK modelling, where time, cost and labour requirements greatly deter its application. (c) 2006 Wiley-Liss, Inc. and the American Pharmacists Association
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Na-K-Cl cotransporter of secretory epithelia.

            The Na-K-Cl cotransporters are a class of ion transport proteins that transport Na, K, and Cl ions into and out of cells in an electrically neutral manner, in most cases with a stoichiometry of 1Na:1K:2Cl. To date, two Na-K-Cl cotransporter isoforms have been identified: NKCC1, which is present in a wide variety of secretory epithelia and non-epithelial cells; and NKCC2, which is present exclusively in the kidney, in the epithelial cells of the thick ascending limb of Henle's loop and of the macula densa. Both NKCC isoforms represent part of a diverse family of cation-chloride cotransport proteins that share a common predicted membrane topology; this family also includes Na-Cl cotransporters and multiple K-Cl cotransporter isoforms. In secretory epithelia, the regulation of NKCC1, which is typically present on the basolateral membrane, is tightly coordinated with that of other transporters, including apical Cl channels, to maintain cell volume and integrity during active salt and fluid secretion. Changes in intracellular [Cl] ([Cl]i) appear to be involved in this regulation of NKCC1, which is directly phosphorylated by an unknown protein kinase in response to various secretagogues as well as reductions in [Cl]i and cell volume. This review focuses on structure-function relationships within NKCC1 and on recent developments pertaining to NKCC1 regulation at cellular and molecular levels.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human intestinal permeability.

              This review focuses on permeability measurements in humans, briefly discussing different perfusion techniques, the relevance of human Peff values, and various aspects of in vivo transport mechanisms. In addition, human Peff values are compared with corresponding data from three preclinical transport models. The regional human jejunal perfusion technique has been validated in several important ways. One of the most important findings is that there is a good correlation between the measured human effective permeability values and the extent of absorption of drugs in humans determined by pharmacokinetic studies. Estimations of the absorption half-lives from the measured Peff agree very well with the time to maximal amount of the dose absorbed achieved after an oral dose in humans. We have also shown that it is possible to determine the Peff for carrier-mediated transported compounds and to classify them according to the proposed biopharmaceutical classification system (BCS). Furthermore, human in vivo permeabilities can be predicted using preclinical permeability models, such as in situ perfusion of rat jejunum, the Caco-2 model, and excised intestinal segments in the Ussing chamber. The permeability of passively transported compounds can be predicted with a particularly high degree of accuracy. However, special care must be taken for drugs with a carrier-mediated transport mechanism, and a scaling factor has to be used. Finally, the data obtained in vivo in humans emphasize the need for more clinical studies investigating the effect of physiological in vivo factors and molecular mechanisms influencing the transport of drugs across the intestinal and as well as other membrane barriers. It will also be important to study the effect of antitransport mechanisms (multidrug resistance, MDR), such as efflux by P-glycoprotein(s) and gut wall metabolism, for example CYP 3A4, on bioavailability.
                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                15 December 2020
                29 December 2020
                : 5
                : 51
                : 32939-32950
                Affiliations
                []Department of Pharmaceutics, University of Washington , Seattle, Washington 98195-0005, United States
                []College of Pharmacy and Pharmaceutical Sciences, Washington State University , Spokane, Washington 99202, United States
                [§ ]National Institute of Pharmaceutical Education and Research (NIPER) , SAS Nagar, Punjab 160062, India
                []Office of Testing and Research, Office of Pharmaceutical Quality, CDER/ FDA , Silver Spring, Maryland 20903-1058, United States
                Author notes
                Article
                10.1021/acsomega.0c03930
                7774078
                33403255
                2a32a40b-bee6-496a-b7be-c667b0967a1f
                © 2020 The Authors. Published by American Chemical Society

                This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.

                History
                : 14 August 2020
                : 03 December 2020
                Categories
                Article
                Custom metadata
                ao0c03930
                ao0c03930

                Comments

                Comment on this article