16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      In Vivo Study of the Sorbicillinoid Gene Cluster in Trichoderma reesei

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sorbicillinoids are a diverse group of yellow secondary metabolites that are produced by a range of not closely related ascomycetes, including Penicillium chrysogenum, Acremonium chrysogenum, and Trichoderma reesei. They share a similarity to the name-giving compound sorbicillin, a hexaketide. Previously, a conserved gene cluster containing two polyketide synthases has been identified as the source of sorbicillin, and a model for the biosynthesis of sorbicillin in P. chrysogenum has been proposed. In this study, we deleted the major genes of interest of the cluster in T. reesei, namely sor1, sor3, and sor4. Sor1 is the homolog of P. chrysogenum SorA, which is the first polyketide synthase of the proposed biosynthesis pathway. Sor3 is a flavin adenine dinucleotide (FAD)-dependent monooxygenase, and its homolog in P. chrysogenum, SorC, was shown to oxidize sorbicillin and 2′,3′-dihydrosorbicillin to sorbicillinol and 2′,3′-dihydrosorbicillinol, respectively, in vitro. Sor4 is an FAD/flavin mononucleotide-containing dehydrogenase with an unknown function. We measured the amounts of synthesized sorbicillinoids throughout growth and could verify the roles of Sor1 and Sor3 in vivo in T. reesei. In the absence of Sor4, two compounds annotated to dihydrosorbicillinol accumulate in the supernatant and only small amounts of sorbicillinol are synthesized. Therefore, we suggest extending the current biosynthesis model about Sor4 reducing 2′,3′-dihydrosorbicillin and 2′,3′-dihydrosorbicillinol to sorbicillinol and sorbicillinol, respectively. Sorbicillinol turned out to be the main chemical building block for most sorbicillinoids, including oxosorbicillinol, bisorbicillinol, and bisvertinolon. Further, we detected the sorbicillinol-dependent synthesis of 5-hydroxyvertinolide at early time points, which contradicts previous models for biosynthesis of 5-hydroxyvertinolide. Finally, we investigated whether sorbicillinoids from T. reesei have a growth limiting effect on the fungus itself or on plant pathogenic fungi or on pathogenic bacteria.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina).

          Trichoderma reesei is the main industrial source of cellulases and hemicellulases used to depolymerize biomass to simple sugars that are converted to chemical intermediates and biofuels, such as ethanol. We assembled 89 scaffolds (sets of ordered and oriented contigs) to generate 34 Mbp of nearly contiguous T. reesei genome sequence comprising 9,129 predicted gene models. Unexpectedly, considering the industrial utility and effectiveness of the carbohydrate-active enzymes of T. reesei, its genome encodes fewer cellulases and hemicellulases than any other sequenced fungus able to hydrolyze plant cell wall polysaccharides. Many T. reesei genes encoding carbohydrate-active enzymes are distributed nonrandomly in clusters that lie between regions of synteny with other Sordariomycetes. Numerous genes encoding biosynthetic pathways for secondary metabolites may promote survival of T. reesei in its competitive soil habitat, but genome analysis provided little mechanistic insight into its extraordinary capacity for protein secretion. Our analysis, coupled with the genome sequence data, provides a roadmap for constructing enhanced T. reesei strains for industrial applications such as biofuel production.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The development of a heterologous transformation system for the cellulolytic fungus Trichoderma reesei based on a pyrG-negative mutant strain.

            Six uridine auxotroph mutants of Trichoderma reesei QM 9414 were isolated by resistance to 5-fluoroorotic acid and one strain was identified as OMP-decarboxylase negative (pyr-) by a radiometric enzyme assay. Transformation to uridine prototrophy was achieved with the pyr4 gene of Neurospora crassa (up to 1500 transformants/micrograms) and with pyrA of Aspergillus niger (700-800 transformants/micrograms). In many transformants the PYR+ function seems to be present as extrachromosomal DNA. There is evidence for a correlation between the stability of transformants and integration of the vector in the genome whereas unstable transformants are obtained when autonomous replication of the plasmid occurs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transformation system for Hypocrea jecorina (Trichoderma reesei) that favors homologous integration and employs reusable bidirectionally selectable markers.

              Hypocrea jecorina is an industrially important filamentous fungus due to its effective production of hydrolytic enzymes. It has received increasing interest because of its ability to convert lignocellulosic biomass to monomeric sugars, which can be converted into biofuels or platform chemicals. Genetic engineering of strains is a highly important means of meeting the requirements of tailor-made applications. Therefore, we report the development of a transformation system that allows highly efficient gene targeting by using a tmus53 (human LIG4 homolog) deletion strain. Moreover, it permits the unlimited reuse of the same marker by employing a Cre/loxP-based excision system. Both marker insertion and marker excision can be positively selected for by combining resistance to hygromycin B and loss of sensitivity to fluoroacetamide. Finally, the marker pyr4, also positively selectable for insertion and loss, can be used to remove the cre gene.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                20 October 2017
                2017
                : 8
                : 2037
                Affiliations
                [1] 1Research Area Biochemical Technology, Institute of Chemical, Environmental & Biological Engineering , Vienna, Austria
                [2] 2Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen, Netherlands
                [3] 3Institute of Microbiology, University of Veterinary Medicine , Vienna, Austria
                Author notes

                Edited by: Bhim Pratap Singh, Mizoram University, India

                Reviewed by: Roberto Silva, University of São Paulo, Brazil; Chandra Nayak, University of Mysore, India

                *Correspondence: Astrid R. Mach-Aigner, astrid.mach-aigner@ 123456tuwien.ac.at

                This article was submitted to Microbiotechnology, Ecotoxicology and Bioremediation, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2017.02037
                5654950
                29104566
                2a67076e-e5ec-401c-b585-f6ce5582402d
                Copyright © 2017 Derntl, Guzmán Chávez, Mello-de-Sousa, Busse, Driessen, Mach and Mach-Aigner.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 March 2017
                : 05 October 2017
                Page count
                Figures: 9, Tables: 3, Equations: 0, References: 27, Pages: 12, Words: 0
                Funding
                Funded by: Austrian Science Fund 10.13039/501100002428
                Award ID: P26733
                Award ID: P29556
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                sorbicillinoids,sorbicillinol,5-hydroxyvertinolide,trichoderma reesei,acremonium chrysogenum,penicillium chrysogenum

                Comments

                Comment on this article